Heat Shock Proteins in the “Hot” Mitochondrion: Identity and Putative Roles

BioEssays - Tập 41 Số 9 - 2019
M. Nasr1,2, Г. И. Довбешко3, Stephen L. Bearne4,5, Nagwa El‐Badri1, Chérif F. Matta5,6,2,7
1Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt
2Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada
3Department of Physics of Biological Systems Institute of Physics of the National Academy of Sciences of Ukraine Prospekt Nauki 46 Kiev 03039 Ukraine
4Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
5Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
6Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3 Canada
7Département de chimie Université Laval Québec Québec G1V 0A6 Canada

Tóm tắt

The mitochondrion is known as the “powerhouse” of eukaryotic cells since it is the main site of adenosine 5′‐triphosphate (ATP) production. Using a temperature‐sensitive fluorescent probe, it has recently been suggested that the stray free energy, not captured into ATP, is potentially sufficient to sustain mitochondrial temperatures higher than the cellular environment, possibly reaching up to 50 °C. By 50 °C, some DNA and mitochondrial proteins may reach their melting temperatures; how then do these biomolecules maintain their structure and function? Further, the production of reactive oxygen species (ROS) accelerates with temperature, implying higher oxidative stresses in the mitochondrion than generally appreciated. Herein, it is proposed that mitochondrial heat shock proteins (particularly Hsp70), in addition to their roles in protein transport and folding, protect mitochondrial proteins and DNA from thermal and ROS damage. Other thermoprotectant mechanisms are also discussed.

Từ khóa


Tài liệu tham khảo

10.1371/journal.pbio.2003992

10.1371/journal.pbio.2005113

10.1039/C5CC01088H

10.1007/s00203-016-1331-4

10.1083/jcb.122.6.1267

Halliwell B., 1999, Free Radicals in Biology and Medicine

10.1016/j.mito.2011.02.001

Storey K. B., 2012, Temperature Adaptation in a Changing Climate: Nature at Risk, 10.1079/9781845938222.0000

10.1016/j.redox.2014.10.003

10.1201/9781315735368

10.1083/jcb.123.1.109

Li Z., 2004, Curr. Protoc. Immunol, 58, A.1T.1

10.1146/annurev.ge.22.120188.003215

10.1083/jcb.127.4.893

10.1016/j.bbamcr.2012.06.005

10.1006/jmbi.1995.0636

10.1016/0006-2952(72)90419-4

10.1016/0305-0491(73)90227-7

10.1016/0305-0491(73)90228-9

10.1016/S0005-2728(98)00161-3

10.1038/290457a0

10.1038/13779

Antonarakis S. E., 2010, Vogel and Motulsky's Human Genetics: Problems and Approaches

10.1083/jcb.53.2.393

10.1128/mBio.02425-14

10.1016/j.bbamcr.2013.05.012

10.1074/jbc.M201756200

10.1042/BJ20081386

10.1111/j.0031-9317.2005.00582.x

10.1074/jbc.M206525200

10.1091/mbc.e12-10-0719

10.1091/mbc.E14-09-1371

10.1128/br.11.3.189-225.1947

10.3390/life4010077

10.1006/jmbi.1995.0585

10.1038/354490a0

10.1128/jb.176.19.6148-6152.1994

10.1093/gbe/evu257

10.1099/ijs.0.013466-0

10.1007/s00248-017-0930-1

10.1128/AEM.00559-14

10.1128/JB.00465-07

10.1046/j.1462-2920.2002.00335.x

Martins L. O., 1995, Appl. Environ. Microbiol, 61, 3299, 10.1128/aem.61.9.3299-3303.1995

10.1016/j.carres.2008.08.030

10.1104/pp.103.020610

10.1073/pnas.0308594100

10.1021/jp983699s

NCBI Reference Sequence: NM_004134.7 2019 https://www.ncbi.nlm.nih.gov/nuccore/NM_004134(accessed: March 2019).

NCBI Reference Sequence: NM_005345.5 2019 https://www.ncbi.nlm.nih.gov/nuccore/NM_005345(accessed: March 2019).

NCBI Reference Sequence: GenBank: MF737176.1 2019 https://www.ncbi.nlm.nih.gov/nuccore/MF737176(accessed: March 2019).

10.1371/journal.pone.0059907

10.1021/acs.jpca.7b09528

10.1021/acs.biochem.5b00834

10.1080/01616412.2016.1251711