Heat Shock Protein 70 Is Secreted from Tumor Cells by a Nonclassical Pathway Involving Lysosomal Endosomes

Journal of Immunology - Tập 177 Số 11 - Trang 7849-7857 - 2006
Salamatu S. Mambula1, Stuart K. Calderwood2
1Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 21-27 Burlington Avenue, Boston, MA 02215, USA.
2Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215

Tóm tắt

AbstractHeat shock protein (HSP)70 can be released from tumor cells and stimulate a potent antitumor immune response. However, HSP70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. We have observed HSP70 release from intact human prostate carcinoma cell lines (PC-3 and LNCaP) by a mechanism independent of de novo HSP70 synthesis or cell death. This pathway is similar to one used by the leaderless protein IL-1β. Our studies show that HSP70 release involves transit though an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of HSP70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of HSP70 into this secretory compartment appears to involve the ABC family transporter proteins and ABC transporter inhibitor glibenclamide antagonizes secretion. Although the cell signals involved in triggering stress induced HSP70 release though this lysosomal pathway are largely unknown, our experiments suggest a regulatory role for extracellular ATP. These mechanisms appear to be shared by IL-1β secretion. Following release, we observed the binding of extracellular HSP70 to the cell surface of the prostate carcinoma cells. These findings suggest that secreted HSP70 can take part in paracrine or autocrine interactions with adjacent cell surfaces. Our experiments therefore suggest a mechanism for HSP70 secretion and binding to the surface of other cells that may be involved in recognition of the tumor cells by the immune system.

Từ khóa


Tài liệu tham khảo

Lindquist, S., E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22: 631-677.

Asea, A., S. K. Kraeft, E. A. Kurt-Jones, M. A. Stevenson, L. B. Chen, R. W. Finberg, G. C. Koo, S. K. Calderwood. 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6: 435-442.

Srivastava, P.. 2002. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20: 395-425.

Theriault, J. R., S. S. Mambula, T. Sawamura, M. A. Stevenson, S. K. Calderwood. 2005. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett. 579: 1951-1960.

Calderwood, S. K., J. R. Theriault, J. Gong. 2005. How is the immune response affected by hyperthermia and heat shock proteins?. Int. J. Hyperthermia 21: 713-716.

Chen, X., Q. Tao, H. Yu, L. Zhang, X. Cao. 2002. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol. Lett. 84: 81-87.

Daniels, G. A., L. Sanchez-Perez, R. M. Diaz, T. Kottke, J. Thompson, M. Lai, M. Gough, M. Karim, A. Bushell, H. Chong, et al 2004. A simple method to cure established tumors by inflammatory killing of normal cells. Nat. Biotechnol. 22: 1125-1132.

Noessner, E., R. Gastpar, V. Milani, A. Brandl, P. J. Hutzler, M. C. Kuppner, M. Roos, E. Kremmer, A. Asea, S. K. Calderwood, R. D. Issels. 2002. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169: 5424-5432.

Baker-LePain, J. C., R. C. Reed, C. V. Nicchitta. 2003. ISO: a critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr. Opin. Immunol. 15: 89-94.

Basu, S., R. J. Binder, R. Suto, K. M. Anderson, P. K. Srivastava. 2000. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12: 1539-1546.

Calderwood, S. K.. 2005. Chaperones and slow death: a recipe for tumor immunotherapy. Trends Biotechnol. 23: 57-59.

Andrei, C., C. Dazzi, L. Lotti, M. R. Torrisi, G. Chimini, A. Rubartelli. 1999. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10: 1463-1475.

Powers, C. J., S. W. McLeskey, A. Wellstein. 2000. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7: 165-197.

Tarantini, F., I. Micucci, S. Bellum, M. Landriscina, S. Garfinkel, I. Prudovsky, T. Maciag. 2001. The precursor but not the mature form of IL1α blocks the release of FGF1 in response to heat shock. J. Biol. Chem. 276: 5147-5151.

Prudovsky, I., A. Mandinova, R. Soldi, C. Bagala, I. Graziani, M. Landriscina, F. Tarantini, M. Duarte, S. Bellum, H. Doherty, T. Maciag. 2003. The non-classical export routes: FGF1 and IL-1α point the way. J. Cell Sci. 116: 4871-4881.

Hightower, L. E., P. T. Guidon, Jr. 1989. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell. Physiol. 138: 257-266.

Hamon, Y., M. F. Luciani, F. Becq, B. Verrier, A. Rubartelli, G. Chimini. 1997. Interleukin-1β secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood 90: 2911-2915.

Blott, E. J., G. M. Griffiths. 2002. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3: 122-131.

Kuchler, K., A. Rubartelli, B. Holland. 1997. Unusual Secretory Pathways: From Bacteria to Man R. G. Landes Company, Georgetown.

Higgins, C. F.. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8: 67-113.

Marty, V., C. Medina, C. Combe, P. Parnet, T. Amedee. 2005. ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49: 511-519.

Ferrari, D., P. Chiozzi, S. Falzoni, M. Dal Susino, L. Melchiorri, O. R. Baricordi, F. Di Virgilio. 1997. Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. 159: 1451-1458.

Mambula, S. S., K. Sau, P. Henneke, D. T. Golenbock, S. M. Levitz. 2002. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J. Biol. Chem. 277: 39320-39326.

Tang, D., M. A. Khaleque, E. L. Jones, J. R. Theriault, C. Li, W. H. Wong, M. A. Stevenson, S. K. Calderwood. 2005. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10: 46-58.

Jackson, A., S. Friedman, X. Zhan, K. A. Engleka, R. Forough, T. Maciag. 1992. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 89: 10691-10695.

Burd, R., T. S. Dziedzic, Y. Xu, M. A. Caligiuri, J. R. Subjeck, E. A. Repasky. 1998. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J. Cell. Physiol. 177: 137-147.

Ostberg, J. R., R. Patel, E. A. Repasky. 2000. Regulation of immune activity by mild (fever-range) whole body hyperthermia: effects on epidermal Langerhans cells. Cell Stress Chaperones 5: 458-461.

Hahn, G. M., and G. C. Li. 1982. Thermotolerance and heat shock proteins in mammalian cells. Radiat. Res. 92: 452–457.

Jones, E. L., M. J. Zhao, M. A. Stevenson, S. K. Calderwood. 2004. The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. Int. J. Hyperthermia 20: 835-849.

Mambula, S. S. a. S. K. C. 2006. Heat induced HSP70 release from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int. J. Hyperthermia. In press.

Mariethoz, E., M. R. Jacquier-Sarlin, G. Multhoff, A. M. Healy, F. Tacchini-Cottier, B. S. Polla. 1997. Heat shock and proinflammatory stressors induce differential localization of heat shock proteins in human monocytes. Inflammation 21: 629-642.

Asea, A. A., S. K. Calderwood. 2005. Regulation of Signal Transduction by Intracellular and Extracellular HSP70 Cambridge University Press, Cambridge, U.K.

Arai, M., K. Kuwajima. 2000. Role of the molten globule state in protein folding. Adv. Protein Chem. 53: 209-282.

Ptitsyn, O. B.. 1995. Molten globule and protein folding. Adv. Protein Chem. 47: 83-229.

Andrei, C., P. Margiocco, A. Poggi, L. V. Lotti, M. R. Torrisi, A. Rubartelli. 2004. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: implications for inflammatory processes. Proc. Natl. Acad. Sci. USA 101: 9745-9750.

Gardella, S., C. Andrei, D. Ferrera, L. V. Lotti, M. R. Torrisi, M. E. Bianchi, A. Rubartelli. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3: 995-1001.

Maizel, A., O. Bensaude, A. Prochiantz, A. Joliot. 1999. A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126: 3183-3190.

Peterson, E. A., M. R. Sutherland, M. E. Nesheim, E. L. Pryzdial. 2003. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J. Cell Sci. 116: 2399-2408.

Arispe, N., M. Doh, A. De Maio. 2002. Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7: 330-338.

Barni, S., V. Bertone, M. G. Silvotti, I. Freitas, G. Mathe, P. Pontiggia. 1996. Lysosomal exocytosis induced by hyperthermia: a new model of cancer death III: effect on liver metastasis. Biomed. Pharmacother. 50: 79-84.

Pontiggia, P., S. Barni, G. Mathe, V. Bertone, E. Pontiggia. 1995. Lysosomal exocytosis induced by hyperthermia: a new model of cancer cell death II: effect on peritoneal macrophages. Biomed. Pharmacother. 49: 429-430.

Evdonin, A. L., I. V. Guzhova, B. A. Margulis, N. D. Medvedeva. 2004. Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int. 4: 2

Lim, Y. P., C. Y. Wong, L. L. Ooi, B. J. Druker, R. J. Epstein. 2004. Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implications for adjuvant use of kinase-inhibitory drugs. Clin. Cancer Res. 10: 3980-3987.

Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M. E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22: 5551-5560.

Wisniewski, J. R., Z. Szewczuk, I. Petry, R. Schwanbeck, U. Renner. 1999. Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity. J. Biol. Chem. 274: 20116-20122.

Tytell, M.. 2005. Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int. J. Hyperthermia 21: 445-455.

Lancaster, G. I., M. A. Febbraio. 2005. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. 280: 23349-23355.

Gastpar, R., M. Gehrmann, M. A. Bausero, A. Asea, C. Gross, J. A. Schroeder, G. Multhoff. 2005. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65: 5238-5247.

Rodriguez, A., P. Webster, J. Ortego, N. W. Andrews. 1997. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137: 93-104.

Multhoff, G., L. Mizzen, C. C. Winchester, C. M. Milner, S. Wenk, G. Eissner, H. H. Kampinga, B. Laumbacher, J. Johnson. 1999. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp. Hematol. 27: 1627-1636.

Calderwood, S. K., J. R. Theriault, J. Gong. 2005. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur. J. Immunol. 35: 2518-2527.

Multhoff, G.. 2002. Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia 18: 576-585.

Dumitriu, I. E., P. Baruah, A. A. Manfredi, M. E. Bianchi, P. Rovere-Querini. 2005. HMGB1: guiding immunity from within. Trends Immunol. 26: 381-387.

Ostberg, J. R., E. A. Repasky. 2000. Comparison of the effects of two different whole body hyperthermia protocols on the distribution of murine leukocyte populations. Int. J. Hyperthermia 16: 29-43.