Heat Shock Protein 70 Is Secreted from Tumor Cells by a Nonclassical Pathway Involving Lysosomal Endosomes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asea, A., S. K. Kraeft, E. A. Kurt-Jones, M. A. Stevenson, L. B. Chen, R. W. Finberg, G. C. Koo, S. K. Calderwood. 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6: 435-442.
Srivastava, P.. 2002. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20: 395-425.
Theriault, J. R., S. S. Mambula, T. Sawamura, M. A. Stevenson, S. K. Calderwood. 2005. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett. 579: 1951-1960.
Calderwood, S. K., J. R. Theriault, J. Gong. 2005. How is the immune response affected by hyperthermia and heat shock proteins?. Int. J. Hyperthermia 21: 713-716.
Chen, X., Q. Tao, H. Yu, L. Zhang, X. Cao. 2002. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol. Lett. 84: 81-87.
Daniels, G. A., L. Sanchez-Perez, R. M. Diaz, T. Kottke, J. Thompson, M. Lai, M. Gough, M. Karim, A. Bushell, H. Chong, et al 2004. A simple method to cure established tumors by inflammatory killing of normal cells. Nat. Biotechnol. 22: 1125-1132.
Noessner, E., R. Gastpar, V. Milani, A. Brandl, P. J. Hutzler, M. C. Kuppner, M. Roos, E. Kremmer, A. Asea, S. K. Calderwood, R. D. Issels. 2002. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169: 5424-5432.
Baker-LePain, J. C., R. C. Reed, C. V. Nicchitta. 2003. ISO: a critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr. Opin. Immunol. 15: 89-94.
Basu, S., R. J. Binder, R. Suto, K. M. Anderson, P. K. Srivastava. 2000. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12: 1539-1546.
Calderwood, S. K.. 2005. Chaperones and slow death: a recipe for tumor immunotherapy. Trends Biotechnol. 23: 57-59.
Andrei, C., C. Dazzi, L. Lotti, M. R. Torrisi, G. Chimini, A. Rubartelli. 1999. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10: 1463-1475.
Powers, C. J., S. W. McLeskey, A. Wellstein. 2000. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7: 165-197.
Tarantini, F., I. Micucci, S. Bellum, M. Landriscina, S. Garfinkel, I. Prudovsky, T. Maciag. 2001. The precursor but not the mature form of IL1α blocks the release of FGF1 in response to heat shock. J. Biol. Chem. 276: 5147-5151.
Prudovsky, I., A. Mandinova, R. Soldi, C. Bagala, I. Graziani, M. Landriscina, F. Tarantini, M. Duarte, S. Bellum, H. Doherty, T. Maciag. 2003. The non-classical export routes: FGF1 and IL-1α point the way. J. Cell Sci. 116: 4871-4881.
Hightower, L. E., P. T. Guidon, Jr. 1989. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell. Physiol. 138: 257-266.
Hamon, Y., M. F. Luciani, F. Becq, B. Verrier, A. Rubartelli, G. Chimini. 1997. Interleukin-1β secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood 90: 2911-2915.
Kuchler, K., A. Rubartelli, B. Holland. 1997. Unusual Secretory Pathways: From Bacteria to Man R. G. Landes Company, Georgetown.
Higgins, C. F.. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8: 67-113.
Marty, V., C. Medina, C. Combe, P. Parnet, T. Amedee. 2005. ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49: 511-519.
Ferrari, D., P. Chiozzi, S. Falzoni, M. Dal Susino, L. Melchiorri, O. R. Baricordi, F. Di Virgilio. 1997. Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. 159: 1451-1458.
Mambula, S. S., K. Sau, P. Henneke, D. T. Golenbock, S. M. Levitz. 2002. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J. Biol. Chem. 277: 39320-39326.
Tang, D., M. A. Khaleque, E. L. Jones, J. R. Theriault, C. Li, W. H. Wong, M. A. Stevenson, S. K. Calderwood. 2005. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10: 46-58.
Jackson, A., S. Friedman, X. Zhan, K. A. Engleka, R. Forough, T. Maciag. 1992. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 89: 10691-10695.
Burd, R., T. S. Dziedzic, Y. Xu, M. A. Caligiuri, J. R. Subjeck, E. A. Repasky. 1998. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J. Cell. Physiol. 177: 137-147.
Ostberg, J. R., R. Patel, E. A. Repasky. 2000. Regulation of immune activity by mild (fever-range) whole body hyperthermia: effects on epidermal Langerhans cells. Cell Stress Chaperones 5: 458-461.
Hahn, G. M., and G. C. Li. 1982. Thermotolerance and heat shock proteins in mammalian cells. Radiat. Res. 92: 452–457.
Jones, E. L., M. J. Zhao, M. A. Stevenson, S. K. Calderwood. 2004. The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. Int. J. Hyperthermia 20: 835-849.
Mambula, S. S. a. S. K. C. 2006. Heat induced HSP70 release from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int. J. Hyperthermia. In press.
Mariethoz, E., M. R. Jacquier-Sarlin, G. Multhoff, A. M. Healy, F. Tacchini-Cottier, B. S. Polla. 1997. Heat shock and proinflammatory stressors induce differential localization of heat shock proteins in human monocytes. Inflammation 21: 629-642.
Asea, A. A., S. K. Calderwood. 2005. Regulation of Signal Transduction by Intracellular and Extracellular HSP70 Cambridge University Press, Cambridge, U.K.
Arai, M., K. Kuwajima. 2000. Role of the molten globule state in protein folding. Adv. Protein Chem. 53: 209-282.
Andrei, C., P. Margiocco, A. Poggi, L. V. Lotti, M. R. Torrisi, A. Rubartelli. 2004. Phospholipases C and A2 control lysosome-mediated IL-1β secretion: implications for inflammatory processes. Proc. Natl. Acad. Sci. USA 101: 9745-9750.
Gardella, S., C. Andrei, D. Ferrera, L. V. Lotti, M. R. Torrisi, M. E. Bianchi, A. Rubartelli. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3: 995-1001.
Maizel, A., O. Bensaude, A. Prochiantz, A. Joliot. 1999. A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126: 3183-3190.
Peterson, E. A., M. R. Sutherland, M. E. Nesheim, E. L. Pryzdial. 2003. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J. Cell Sci. 116: 2399-2408.
Arispe, N., M. Doh, A. De Maio. 2002. Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7: 330-338.
Barni, S., V. Bertone, M. G. Silvotti, I. Freitas, G. Mathe, P. Pontiggia. 1996. Lysosomal exocytosis induced by hyperthermia: a new model of cancer death III: effect on liver metastasis. Biomed. Pharmacother. 50: 79-84.
Pontiggia, P., S. Barni, G. Mathe, V. Bertone, E. Pontiggia. 1995. Lysosomal exocytosis induced by hyperthermia: a new model of cancer cell death II: effect on peritoneal macrophages. Biomed. Pharmacother. 49: 429-430.
Evdonin, A. L., I. V. Guzhova, B. A. Margulis, N. D. Medvedeva. 2004. Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int. 4: 2
Lim, Y. P., C. Y. Wong, L. L. Ooi, B. J. Druker, R. J. Epstein. 2004. Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implications for adjuvant use of kinase-inhibitory drugs. Clin. Cancer Res. 10: 3980-3987.
Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M. E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22: 5551-5560.
Wisniewski, J. R., Z. Szewczuk, I. Petry, R. Schwanbeck, U. Renner. 1999. Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity. J. Biol. Chem. 274: 20116-20122.
Tytell, M.. 2005. Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int. J. Hyperthermia 21: 445-455.
Lancaster, G. I., M. A. Febbraio. 2005. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. 280: 23349-23355.
Gastpar, R., M. Gehrmann, M. A. Bausero, A. Asea, C. Gross, J. A. Schroeder, G. Multhoff. 2005. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65: 5238-5247.
Rodriguez, A., P. Webster, J. Ortego, N. W. Andrews. 1997. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137: 93-104.
Multhoff, G., L. Mizzen, C. C. Winchester, C. M. Milner, S. Wenk, G. Eissner, H. H. Kampinga, B. Laumbacher, J. Johnson. 1999. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp. Hematol. 27: 1627-1636.
Calderwood, S. K., J. R. Theriault, J. Gong. 2005. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur. J. Immunol. 35: 2518-2527.
Multhoff, G.. 2002. Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia 18: 576-585.
Dumitriu, I. E., P. Baruah, A. A. Manfredi, M. E. Bianchi, P. Rovere-Querini. 2005. HMGB1: guiding immunity from within. Trends Immunol. 26: 381-387.