Heart toxicity from breast cancer radiotherapy

Springer Science and Business Media LLC - Tập 195 Số 1 - Trang 1-12 - 2019
Marc D. Piroth1, René Baumann2, Wilfried Budach3, Jürgen Dunst4, Petra Feyer5, Rainer Fietkau6, Wulf Haase7, Wolfgang Harms8, Thomas Hehr9, David Krug10, A. Röser1, Felix Sedlmayer11, Rainer Souchon12, Frederik Wenz13, Rolf Sauer6
1Helios University Hospital Wuppertal, Witten/Herdecke University, Heusnerstraße 40, 42283, Wuppertal, Germany
2St. Marien-Krankenhaus Siegen, Siegen, Germany
3Heinrich-Heine-University Hospital Düsseldorf, Düsseldorf, Germany
4University Hospital Schleswig-Holstein, Kiel, Germany
5Vivantes Hospital Neukoelln, Berlin, Germany
6University Hospital Erlangen, Erlangen, Germany
7formerly St.-Vincentius-Hospital Karlsruhe, Karlsruhe, Germany
8St. Claraspital Basel, Basel, Switzerland
9Marienhospital Stuttgart, Stuttgart, Germany
10University Hospital Heidelberg, Heidelberg, Germany
11Paracelsus Medical University Hospital Salzburg, Salzburg, Austria
12formerly University Hospital, Tübingen, Germany
13University Hospital Mannheim, Medical Faculty, Heidelberg University, Mannheim, Germany

Tóm tắt

Abstract Background Late cardiac toxicities caused by (particularly left-sided) breast radiotherapy (RT) are now recognized as rare but relevant sequelae, which has prompted research on risk structure identification and definition of threshold doses to heart subvolumes. The aim of the present review was to critically discuss the clinical evidence on late cardiac reactions based on dose-dependent outcome reports for mean heart doses as well as doses to cardiac substructures. Methods A literature review was performed to examine clinical evidence on radiation-induced heart toxicities. Mean heart doses and doses to cardiac substructures were focused upon based on dose-dependent outcome reports. Furthermore, an overview of radiation techniques for heart protection is given and non-radiotherapeutic aspects of cardiotoxicity in the multimodal setting of breast cancer treatment are discussed. Results Based on available findings, the DEGRO breast cancer expert panel recommends the following constraints: mean heart dose <2.5 Gy; DmeanLV (mean dose left ventricle) < 3 Gy; V5LV (volume of LV receiving ≥5 Gy) < 17%; V23LV (volume of LV receiving ≥23 Gy) < 5%; DmeanLAD (mean dose left descending artery) < 10 Gy; V30LAD (volume of LAD receiving ≥30 Gy) < 2%; V40LAD (volume of LAD receiving ≥40 Gy) < 1%. Conclusion In addition to mean heart dose, breast cancer RT treatment planning should also include constraints for cardiac subvolumes such as LV and LAD. The given constraints serve as a clinicians’ aid for ensuring adequate heart protection. The individual decision between sufficient protection of cardiac structures versus optimal target volume coverage remains in the physician’s hand. The risk of breast cancer-specific mortality and a patient’s cardiac risk factors must be individually weighed up against the risk of radiation-induced cardiotoxicity.

Từ khóa


Tài liệu tham khảo

Clark RM, Whelan T, Levine M et al (1996) Randomized clinical trial of breast irradiation following lumpectomy and axillary dissection for node-negative breast cancer: an update. Ontario Clinical Oncology Group. J Natl Cancer Inst 88(22):1659–1664

Fisher B, Anderson S, Redmond CK et al (1995) Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 333(22):1456–1461. https://doi.org/10.1056/NEJM199511303332203

Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106. https://doi.org/10.1016/S0140-6736(05)67887-7

Cuzick J, Stewart H, Rutqvist L et al (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12(3):447–453

Darby S, McGale P, Peto R et al (2003) Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ 326(7383):256–257

Roychoudhuri R, Robinson D, Putcha V et al (2007) Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer 7:9. https://doi.org/10.1186/1471-2407-7-9

Darby SC, McGale P, Taylor CW et al (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6(8):557–565. https://doi.org/10.1016/S1470-2045(05)70251-5

Bouillon K, Haddy N, Delaloge S et al (2011) Long-term cardiovascular mortality after radiotherapy for breast cancer. J Am Coll Cardiol 57(4):445–452. https://doi.org/10.1016/j.jacc.2010.08.638

Harris EE, Correa C, Hwang WT et al (2006) Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24(25):4100–4106. https://doi.org/10.1200/JCO.2005.05.1037

Taylor CW, Nisbet A, McGale P et al (2007) Cardiac exposures in breast cancer radiotherapy: 1950s–1990s. Int J Radiat Oncol Biol Phys 69(5):1484–1495. https://doi.org/10.1016/j.ijrobp.2007.05.034

Taylor CW, Nisbet A, McGale P et al (2009) Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol 90(1):127–135. https://doi.org/10.1016/j.radonc.2008.09.029

Taylor CW, Povall JM, McGale P et al (2008) Cardiac dose from tangential breast cancer radiotherapy in the year 2006. Int J Radiat Oncol Biol Phys 72(2):501–507. https://doi.org/10.1016/j.ijrobp.2007.12.058

Weberpals J, Jansen L, Muller OJ et al (2018) Long-term heart-specific mortality among 347 476 breast cancer patients treated with radiotherapy or chemotherapy: a registry-based cohort study. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy167

Andratschke N, Maurer J, Molls M et al (2011) Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol 100(2):160–166. https://doi.org/10.1016/j.radonc.2010.08.010

Becker-Schiebe M, Stockhammer M, Hoffmann W et al (2016) Does mean heart dose sufficiently reflect coronary artery exposure in left-sided breast cancer radiotherapy? : influence of respiratory gating. Strahlenther Onkol 192(9):624–631. https://doi.org/10.1007/s00066-016-1011-y

Duma MN, Munch S, Oechsner M et al (2017) Are heart toxicities in breast cancer patients important for radiation oncologists? A practice pattern survey in German speaking countries. BMC Cancer 17(1):563. https://doi.org/10.1186/s12885-017-3548-2

Mehta LS, Watson KE, Barac A, Beckie TM (2018) Cadiovascular disease and breast cancer: where these entities intersect. Circulation 137(8):e30. https://doi.org/10.1161/CIR.0000000000000556

Tapio S (2016) Pathology and biology of radiation-induced cardiac disease. J Radiat Res 57(5):439–448. https://doi.org/10.1093/jrr/rrw064

Adams MJ, Hardenbergh PH, Constine LS et al (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45(1):55–75

Stewart FA, Seemann I, Hoving S et al (2013) Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 25(10):617–624. https://doi.org/10.1016/j.clon.2013.06.012

Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. https://doi.org/10.1038/35025203

Nilsson G, Holmberg L, Garmo H et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30(4):380–386. https://doi.org/10.1200/JCO.2011.34.5900

Moignier A, Broggio D, Derreumaux S et al (2015) Coronary stenosis risk analysis following Hodgkin lymphoma radiotherapy: A study based on patient specific artery segments dose calculation. Radiother Oncol 117(3):467–472. https://doi.org/10.1016/j.radonc.2015.07.043

Marks LB, Yu X, Prosnitz RG et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63(1):214–223. https://doi.org/10.1016/j.ijrobp.2005.01.029

Erven K, Jurcut R, Weltens C et al (2011) Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiat Oncol Biol Phys 79(5):1444–1451. https://doi.org/10.1016/j.ijrobp.2010.01.004

Heggemann F, Grotz H, Welzel G et al (2015) Cardiac function after multimodal breast cancer therapy assessed with functional magnetic resonance imaging and echocardiography imaging. Int J Radiat Oncol Biol Phys 93(4):836–844. https://doi.org/10.1016/j.ijrobp.2015.07.2287

D’Errico MP, Grimaldi L, Petruzzelli MF et al (2012) N‑terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer. Int J Radiat Oncol Biol Phys 82(2):e239–e246. https://doi.org/10.1016/j.ijrobp.2011.03.058

Skytta T, Tuohinen S, Boman E et al (2015) Troponin T‑release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol 10:141. https://doi.org/10.1186/s13014-015-0436-2

Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998. https://doi.org/10.1056/NEJMoa1209825

van den Bogaard VA, Ta BD, van der Schaaf A et al (2017) Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol 35(11):1171–1178. https://doi.org/10.1200/JCO.2016.69.8480

Hahn E, Jiang H, Ng A et al (2017) Late cardiac toxicity after mediastinal radiation therapy for Hodgkin Lymphoma: contributions of coronary artery and whole heart dose-volume variables to risk prediction. Int J Radiat Oncol Biol Phys 98(5):1116–1123. https://doi.org/10.1016/j.ijrobp.2017.03.026

Carr ZA, Land CE, Kleinerman RA et al (2005) Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys 61(3):842–850. https://doi.org/10.1016/j.ijrobp.2004.07.708

Pirie K, Peto R, Reeves GK et al (2013) The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet 381(9861):133–141. https://doi.org/10.1016/S0140-6736(12)61720-6

Taylor C, Correa C, Duane FK et al (2017) Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol 35(15):1641–1649. https://doi.org/10.1200/JCO.2016.72.0722

Jain D, Russell RR, Schwartz RG et al (2017) Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep 19(5):36. https://doi.org/10.1007/s11886-017-0846-x

Dong J, Chen H (2018) Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med 5:9. https://doi.org/10.3389/fcvm.2018.00009

Rygiel K (2017) Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: an overview. J Cancer Res Ther 13(2):186–192. https://doi.org/10.4103/0973-1482.187303

Duma MN, Molls M, Trott KR (2014) From heart to heart for breast cancer patients—cardiovascular toxicities in breast cancer radiotherapy. Strahlenther Onkol 190(1):5–7. https://doi.org/10.1007/s00066-013-0465-4

Zamorano JL, Lancellotti P, Rodriguez Munoz D et al (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37(36):2768–2801. https://doi.org/10.1093/eurheartj/ehw211

Hooning MJ, Botma A, Aleman BM et al (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99(5):365–375. https://doi.org/10.1093/jnci/djk064

Munshi A, Khataniar N, Sarkar B et al (2018) Spatial orientation of coronary arteries and its implication for breast and thoracic radiotherapy-proposing “coronary strip” as a new organ at risk. Strahlenther Onkol. https://doi.org/10.1007/s00066-018-1299-x

Piroth MD, Petz D, Pinkawa M et al (2016) Usefulness of a thermoplastic breast bra for breast cancer radiotherapy : a prospective analysis. Strahlenther Onkol 192(9):609–616. https://doi.org/10.1007/s00066-016-0981-0

Tan W, Liu D, Xue C et al (2012) Anterior myocardial territory may replace the heart as organ at risk in intensity-modulated radiotherapy for left-sided breast cancer. Int J Radiat Oncol Biol Phys 82(5):1689–1697. https://doi.org/10.1016/j.ijrobp.2011.03.009

Tan W, Wang X, Qiu D et al (2011) Dosimetric comparison of intensity-modulated radiotherapy plans, with or without anterior myocardial territory and left ventricle as organs at risk, in early-stage left-sided breast cancer patients. Int J Radiat Oncol Biol Phys 81(5):1544–1551. https://doi.org/10.1016/j.ijrobp.2010.09.028

Wenz F, Budach W (2017) Personalized radiotherapy for invasive breast cancer in 2017 : National S3 guidelines and DEGRO and AGO recommendations. Strahlenther Onkol 193(8):601–603. https://doi.org/10.1007/s00066-017-1158-1

Lauk S, Ruth S, Trott KR (1987) The effects of dose-fractionation on radiation-induced heart disease in rats. Radiother Oncol 8(4):363–367

Appelt AL, Vogelius IR, Bentzen SM (2013) Modern hypofractionation schedules for tangential whole breast irradiation decrease the fraction size-corrected dose to the heart. Clin Oncol (r Coll Radiol) 25(3):147–152. https://doi.org/10.1016/j.clon.2012.07.012

Haviland JS, Owen JR, Dewar JA et al (2013) The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 14(11):1086–1094. https://doi.org/10.1016/S1470-2045(13)70386-3

Whelan TJ, Pignol JP, Levine MN et al (2010) Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 362(6):513–520. https://doi.org/10.1056/NEJMoa0906260

James M, Swadi S, Yi M et al (2018) Ischaemic heart disease following conventional and hypofractionated radiation treatment in a contemporary breast cancer series. J Med Imaging Radiat Oncol 62(3):425–431. https://doi.org/10.1111/1754-9485.12712

Pignol JP, Olivotto I, Rakovitch E et al (2008) A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 26(13):2085–2092. https://doi.org/10.1200/JCO.2007.15.2488

Lohr F, El-Haddad M, Dobler B et al (2009) Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J Radiat Oncol Biol Phys 74(1):73–80. https://doi.org/10.1016/j.ijrobp.2008.07.018

Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492. https://doi.org/10.1016/j.ijrobp.2015.11.049

Schonecker S, Heinz C, Sohn M et al (2016) Reduction of cardiac and coronary artery doses in irradiation of left-sided breast cancer during inspiration breath hold : a planning study. Strahlenther Onkol 192(11):750–758. https://doi.org/10.1007/s00066-016-1039-z

Corradini S, Ballhausen H, Weingandt H et al (2018) Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease : effects of modern radiotherapy techniques. Strahlenther Onkol 194(3):196–205. https://doi.org/10.1007/s00066-017-1213-y

Sakka M, Kunzelmann L, Metzger M et al (2017) Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation : Is IMRT more beneficial than VMAT? Strahlenther Onkol 193(10):800–811. https://doi.org/10.1007/s00066-017-1167-0

Coles CE, Griffin CL, Kirby AM et al (2017) Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5‑year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 390(10099):1048–1060. https://doi.org/10.1016/S0140-6736(17)31145-5

Vaidya JS, Wenz F, Bulsara M et al (2014) Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5‑year results for local control and overall survival from the TARGIT-A randomised trial. Lancet 383(9917):603–613. https://doi.org/10.1016/S0140-6736(13)61950-9

Strnad V, Ott OJ, Hildebrandt G et al (2016) 5‑year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet 387 (10015):229–238. https://doi.org/10.1016/S0140-6736(15)00471-7