Healthy beverages may reduce the genetic risk of abdominal obesity and related metabolic comorbidities: a gene-diet interaction study in Iranian women

Diabetology & Metabolic Syndrome - Tập 14 - Trang 1-10 - 2022
Fatemeh Gholami1, Mahsa Samadi1, Neda Soveid1, Khadijeh Mirzaei1
1Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, I.R. of Iran

Tóm tắt

The nutrition transition in developing countries like Iran causes the increasing rise of obesity and abdominal obesity rates. However, it is not yet well proven that environmental modifications like improving the quality of beverage intake can be effective in people who have a genetic predisposition to obesity. So, in the present study, we examine the interaction between genetic predisposition and healthy beverage index (HBI) with abdominal obesity and obesity-related metabolic risk factors in overweight and obese women. Based on inclusion and exclusion criteria, 202 overweight or obese females were chosen for this cross-sectional study. Body composition, anthropometric measures, physical activity, and beverage intake data were collected and analyzed using recognized and trustworthy methodologies. Biochemical tests were performed on serum samples. A genetic risk score (GRS) was calculated based on the results of genetic tests. The predetermined HBI was calculated based on previous studies. A generalized linear model was used to estimate the interactions between GRS and HBI (GLM). We found significant interactions between GRS and HBI on WHR (β = − 0.39, CI: -0.07 to 0.001, P = 0.05) and WC (β = − 6.18, CI: − 13.41 to 1.05, P = 0.09). Also, there were significant gene-diet interactions for HBI and GRS on HDL (β = 7.09, CI: − 0.73 to 14.92, P = 0.07) and FBS (β = − 9.07, CI: − 18.63 to 0.47, P = 0.06). These findings emphasize the HBI considering genetics appears to protect against the risks of abdominal obesity and metabolic associated obesity markers.

Tài liệu tham khảo

Jafari-Adli S, Jouyandeh Z, Qorbani M, Soroush A, Larijani B, Hasani-Ranjbar S. Prevalence of obesity and overweight in adults and children in Iran; a systematic review. J Diabetes Metab Disord. 2014;13(1):121. AlTamimi JZ, Alshwaiyat NM, AlFaris NA, AlKehayez NM, Ahmad A, Alagal RI. Differences in overweight and obesity prevalence in middle-aged men from twelve Middle Eastern and Asian countries living in Saudi Arabia. Int J General Med. 2022;15:3333. Rahmani A, Sayehmiri K, Asadollahi K, Sarokhani D, Islami F, Sarokhani M. Investigation of the prevalence of obesity in Iran: a systematic review and meta-analysis study. Acta Med Iran. 2015;53:596. Pérez-Rodrigo C, Bárbara GH, Citores MG, Aranceta-Bartrina J. Prevalence of obesity and associated cardiovascular risk factors in the Spanish population: the ENPE study. Revista Española de Cardiología (English Edition). 2022;75(3):232–41. Christakoudi S, Tsilidis KK, Muller DC, Freisling H, Weiderpass E, Overvad K, et al. A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort. Sci Rep. 2020;10(1):1–15. Lukács A, Horváth E, Máté Z, Szabó A, Virág K, Papp M, et al. Abdominal obesity increases metabolic risk factors in non-obese adults: a Hungarian cross-sectional study. BMC Public Health. 2019;19(1):1533. Nam GE, Kim Y-H, Han K, Jung J-H, Rhee E-J, Lee S-S, et al. Obesity fact sheet in Korea, 2019: prevalence of obesity and abdominal obesity from 2009 to 2018 and social factors. J Obes Metab Syndr. 2020;29(2):124. Ragino YI, Stakhneva EM, Polonskaya YV, Kashtanova EV. The role of secretory activity molecules of visceral adipocytes in abdominal obesity in the development of cardiovascular disease: a review. Biomolecules. 2020;10(3):374. Tabrizi JS, Sadeghi-Bazargani H, Farahbakhsh M, Nikniaz L, Nikniaz Z. Prevalence and associated factors of overweight or obesity and abdominal obesity in Iranian population: a population-based study of northwestern Iran. Iran J Public Health. 2018;47(10):1583. Popkin BM, Ng SW. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes Rev. 2022;23(1): e13366. Jones AC, Kirkpatrick SI, Hammond D. Beverage consumption and energy intake among Canadians: analyses of 2004 and 2015 national dietary intake data. Nutr J. 2019;18(1):60. Lee KW, Shin D. A healthy beverage consumption pattern is inversely associated with the risk of obesity and metabolic abnormalities in Korean adults. J Med Food. 2018;21(9):935–45. Hu EA, Anderson CA, Crews DC, Mills KT, He J, Shou H, et al. A healthy beverage score and risk of chronic kidney disease progression, incident cardiovascular disease, and all-cause mortality in the chronic renal insufficiency cohort. Curr Dev Nutr. 2020;4(6):088. Hedrick VE, Myers EA, Zoellner JM, Duffey KJ, Davy BM. Validation of a rapid method to assess habitual beverage intake patterns. Nutrients. 2018;10(1):83. Jalilpiran Y, Mozaffari H, Askari M, Jafari A, Azadbakht L. The association between Healthy Beverage Index and anthropometric measures among children: a cross-sectional study. Eat Weight Disord-Studies on Anorexia, Bulimia and Obesity. 2021;26(5):1437–45. Jibril AT, Mirzababaei A, Shiraseb F, Barekzai AM, Mirzaei K. Association of healthy beverage index with circadian rhythm and quality of sleep among overweight and obese women: a cross-sectional study. Eat Weight Disord-Studies on Anorexia, Bulimia and Obesity. 2022. https://doi.org/10.1007/s40519-022-01391-w. Li S, Cao M, Yang C, Zheng H, Zhu Y. Association of sugar-sweetened beverage intake with risk of metabolic syndrome among children and adolescents in urban China. Public Health Nutr. 2020;23(15):2770–80. Jones AC, Kirkpatrick SI, Hammond D. Beverage consumption and energy intake among Canadians: analyses of 2004 and 2015 national dietary intake data. Nutr J. 2019;18(1):1–14. Kmietowicz Z. Countries that use large amounts of high fructose corn syrup have higher rates of type 2 diabetes. BMJ Br Med Jo (Online). 2012;345:e7994. Yadegari M, Zare-Feyzabadi R, Zakariaeiseraji M, Sahebi R, Shabani N, Khedmatgozar H, et al. Interaction between the genetic variant of rs696217-ghrelin and food intake and obesity and dyslipidemia. Ann Hum Genet. 2022;86(1):14–23. Dashti HS, Miranda N, Cade BE, Huang T, Redline S, Karlson EW, et al. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022;20(1):5. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J, et al. Development and evaluation of a genetic risk score for obesity. Biodemography Soc Biol. 2013;59(1):85–100. Vera B, Dashti HS, Gómez-Abellán P, Hernández-Martínez AM, Esteban A, Scheer FA, et al. Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes. Sci Rep. 2018;8(1):1–11. Zhao X, Xi B, Shen Y, Wu L, Hou D, Cheng H, et al. An obesity genetic risk score is associated with metabolic syndrome in Chinese children. Gene. 2014;535(2):299–302. Abaj F, Koohdani F, Rafiee M, Alvandi E, Yekaninejad MS, Mirzaei K. Interactions between Caveolin-1 (rs3807992) polymorphism and major dietary patterns on cardio-metabolic risk factors among obese and overweight women. BMC Endocr Disord. 2021;21(1):1–14. Garver WS, Newman SB, Gonzales-Pacheco DM, Castillo JJ, Jelinek D, Heidenreich RA, et al. The genetics of childhood obesity and interaction with dietary macronutrients. Genes Nutr. 2013;8(3):271–87. Brunkwall L, Chen Y, Hindy G, Rukh G, Ericson U, Barroso I, et al. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr. 2016;104(3):809–15. Haslam DE, McKeown NM, Herman MA, Lichtenstein AH, Dashti HS. Interactions between genetics and sugar-sweetened beverage consumption on health outcomes: a review of gene–diet interaction studies. Front Endocrinol. 2018;8:368. Dashti HS, Levy DE, Hivert M-F, Alimenti K, McCurley JL, Saxena R, et al. Genetic risk for obesity and the effectiveness of the ChooseWell 365 workplace intervention to prevent weight gain and improve dietary choices. Am J Clin Nutr. 2022;115(1):180–8. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654–62. Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7(213):42–58. Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202. Duffey KJ, Davy BM. The healthy beverage index is associated with reduced cardiometabolic risk in US adults: a preliminary analysis. J Acad Nutr Diet. 2015;115(10):1682–9. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. Myakishev MV, Khripin Y, Hu S, Hamer DH. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 2001;11(1):163–9. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. Yarizadeh HMA, Ghodoosi N, Pooyan S, Djafarian K, Clark CT, Mirzaei Kh. The interaction between the dietary infl ammatory index and MC4R gene variants on cardiovascul ar risk factors. Clin Nutr. 2020;40:495. Abaj F, Koohdani F, Rafiee M, Alvandi E, Yekaninejad MS, Mirzaei K. Interactions between Caveolin-1 (rs3807992) polymorphism and major dietary patterns on cardio-metabolic risk factors among obese and overweight women. BMC Endocr Disord. 2021;21(1):138. Tangestani H, Emamat H, Yekaninejad MS, Keshavarz SA, Mirzaei K. Variants in circadian rhythm gene Cry1 Interacts with healthy dietary pattern for serum leptin levels: a cross-sectional study. Clin Nutr Res. 2021;10(1):48–58. Yu L, Zhang L, Guo L, Wang C. Association between MC4R rs17782313 genotype and obesity: a meta-analysis. Gene. 2020;733:144372. Miranda AM, Steluti J, Norde MM, Fisberg RM, Marchioni DM. The association between genetic risk score and blood pressure is modified by coffee consumption: Gene-diet interaction analysis in a population-based study. Clin Nutr (Edinburgh, Scotland). 2019;38(4):1721–8. Hedrick V, et al. Changes in the healthy beverage index in response to an intervention targeting a reduction in sugarsweetened beverage consumption as compared to an intervention targeting improvements in physical activity: results from the talking health trial. Nutrients. 2015;7(12):10168–78. Dufey KJDB. The healthy beverage index is associated with reduced cardiometabolic risk in US adults: a preliminary analysis. J Acad Nutr Diet. 2015;115(10):1682–9. Fb H. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9. Qibin Q, Jensen MK, Curhan GC, Pasquale LR, et al. Sugarsweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367:1387e96. Tyrrell JWAAR, Yaghootkar H, Beaumont RN, Jones SE, et al. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol. 2017;46:559e75. Olsen NJALLS, Linneberg A, Skaaby T, Husemoen LL, et al. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference. Am J Clin Nutr. 2016;104:816e26. Brunkwall LCY, Hindy G, Rukh G, Ericson U, Barroso I, Johansson I, Franks PW, Orho-Melander M, Renström F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr. 2016;104(3):809–15. Rd M. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol Behav. 1996;59:179–87. DiMeglio DPMR. Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord. 2000;24:794–800. Schulze MBLS, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. 2004;80:348–56. Wang THT, Kang JH, Zheng Y, Jensen MK, Wiggs JL, Pasquale LR, Fuchs CS, Campos H, Rimm EB, Willett WC, Hu FB, Qi L. Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies. BMC Med. 2017;15(1):97. van Dijk AEOM, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009;32:1023–5. Johnston KLCM, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003;78:728–33. LA Loopstra-Masters RC, Haffner SM, Wagenknecht LE, Hanley AJ. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia. 2011;54:320–8. Rodríguez-Morán M, Fernando G-R. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003;26:1147–52. Locke AEKB, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. Cornelis MC, Rob DR. Habitual coffee and tea consumption and cardiometabolic biomarkers in the UK Biobank: the role of beverage types and genetic variation. J Nutr. 2020;150(10):2772–88. Alexander DD, Bylsma LC, Vargas AJ, Cohen SS, Doucette A, Mohamed M, Irvin SR, Miller PE, Watson H, Fryzek JP. Dairy consumption and CVD: a systematic review and metaanalysis. Br J Nutr. 2016;115(4):737–50. Casas-Agustench PAD, Smith CE, Lai CQ, Parnell LD, Borecki IB, Frazier-Wood AC, Allison M, Chen YD, Taylor KD, Rich SS, Rotter JI, Lee YC, Ordovás JM. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two US populations. J Acad Nutr Diet. 2014;114(12):1954–66. Lorenzen JKAA. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br J Nutr. 2011;105:1823–31. Lorenzen JKNS, Holst JJ, Tetens I, Rehfeld JF, Astrup A. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr. 2007;85:678–87. Jacobsen RLJ, Toubro S, et al. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes (Lond). 2005;29:292–301. Duffey KJ PB. Adults with healthier dietary patterns have healthier beverage patterns. J Nutr. 2006; 136(11):2901–2917. Erratum in: J Nutr. 2010; 140(6):1189. Hedrick VDB, Duffey KJ. Is beverage consumption related to specific dietary pattern intakes? Curr Nutr Rep. 2014;4(1):72–81. TE Sánchez-Villegas A, Bes-Rastrollo M, et al. Association between dietary and beverage consumption patterns in the SUN (Seguimiento Universidad de Navarra) cohort study. Public Health Nutr Rev. 2009;12:351–8.