Đề Xuất Thực Phẩm Lành Mạnh Sử Dụng Phương Pháp Phát Hiện Cộng Đồng Thời Gian Nhận Thức Và Đo Lường Độ Tin Cậy

Sajad Ahmadian1, Mehrdad Rostami2, Seyed Mohammad Jafar Jalali3, Mourad Oussalah2, Vahid Farrahi4
1Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
2Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Oulu, Finland
3Institute for Intelligent Systems Research and Innovation, (IISRI), Deakin University, Melbourne, Australia
4Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland

Tóm tắt

Tóm tắtCác hệ thống gợi ý thực phẩm đang ngày càng được phát triển trong các dịch vụ thực phẩm trực tuyến nhằm đưa ra các gợi ý cho người dùng dựa trên chế độ ăn uống trước đó của họ. Mặc dù chế độ ăn uống không lành mạnh có thể gây ra các bệnh khó khăn như tiểu đường, ung thư và bệnh tim mạch sớm, hầu hết các hệ thống gợi ý thực phẩm được phát triển đều không xem xét các yếu tố sức khỏe trong quá trình gợi ý. Điều này nhấn mạnh tầm quan trọng của độ tin cậy của các gợi ý từ góc độ nội dung sức khỏe. Bài báo này đề xuất một hệ thống gợi ý thực phẩm mới dựa trên việc đo lường độ tin cậy nhận thức sức khỏe. Cụ thể, chúng tôi phát triển một phương pháp phát hiện cộng đồng nhận thức thời gian phân nhóm người dùng thành các tập hợp không giao nhau và sử dụng các cộng đồng được xác định như là tập hợp hàng xóm gần nhất trong việc dự đoán xếp hạng. Sau đó, một phương pháp đo lường độ tin cậy mới được giới thiệu bằng cách xem xét cả tiêu chí sức khỏe và độ chính xác của các dự đoán để đánh giá độ tin cậy của các xếp hạng dự đoán. Ngoài ra, các dự đoán không đáng tin cậy được tính toán lại bằng cách loại bỏ những người dùng không hiệu quả khỏi tập hợp hàng xóm gần nhất. Cuối cùng, các dự đoán đã được tính lại được sử dụng để tạo ra một danh sách các thực phẩm như các gợi ý. Các thí nghiệm khác nhau trên một tập dữ liệu thu thập được cho thấy rằng phương pháp được đề xuất cải thiện hiệu suất khoảng 7.63%, 6.97%, 7.37%, 15.09%, và 16.17% dựa trên các tiêu chí độ chính xác, độ hồi phục, F1, giá trị tích lũy đã giảm theo chuẩn hóa (NDCG), và các chỉ số sức khỏe, tương ứng, so với mô hình tốt thứ hai.

Từ khóa


Tài liệu tham khảo

Yengikand, A. K., Meghdadi, M., Ahmadian, S., Jalali, S. M. J., Khosravi, A., Nahavandi, S.: Deep representation learning using multilayer perceptron and stacked autoencoder for recommendation systems. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2485–2491 (2021)

Ahmadian, M., Ahmadi, M., Ahmadian, S., Jalali, S. M. J., Khosravi, A., Nahavandi, S.: Integration of deep sparse autoencoder and particle swarm optimization to develop a recommender system. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2524–2530 (2021)

Ahmadian, S., Ahmadian, M., Jalili, M.: A deep learning based trust- and tag-aware recommender system. Neurocomputing 488, 557–571 (2022)

Ge, M., Elahi, M., Fernaández-Tobías, I., Ricci, F., Massimo, D.: Using tags and latent factors in a food recommender system. In: Proceedings of the 5th International Conference on Digital Health, pp 105–112 (2015)

Liu, Y., Gu, F., Gu, X., Wu, Y., Guo, J., Zhang, J.: Resource recommendation based on industrial knowledge graph in low-resource conditions. Int. J. Comput. Intell. Syst. 15, 42 (2022)

Yera, R., Martinez, L.: Fuzzy tools in recommender systems: a survey. Int. J. Comput. Intell. Syst. 10, 776–803 (2017)

Tahmasebi, F., Meghdadi, M., Ahmadian, S., Valiallahi, K.: A hybrid recommendation system based on profile expansion technique to alleviate cold start problem. Multimed. Tools Appl. 80, 2339–2354 (2021)

Bianchini, D., De Antonellis, V., De Franceschi, N., Melchiori, M.: PREFer: a prescription-based food recommender system. Comput. Stand. Interfaces 54, 64–75 (2017)

Ge, M., Ricci, F., Massimo, D.: Health-aware food recommender system. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp 333–334 (2015)

Zhao, W., Tian, H., Wu, Y., Cui, Z., Feng, T.: A new item-based collaborative filtering algorithm to improve the accuracy of prediction in sparse data. Int. J. Comput. Intell. Syst. 15, 15 (2022)

Lei, Z., Haq, A., Zeb, A., Suzauddola, M., Zhang, D.: Is the suggested food your desired?: Multi-modal recipe recommendation with demand-based knowledge graph. Expert Syst. Appl. 186, 115708 (2021)

Jia, N., Chen, J., Wang, R.: An attention-based convolutional neural network for recipe recommendation. Expert Syst. Appl. 201, 116979 (2022)

Rokon, M. S. J., Morol, M. K., Hasan, I. B., Saif, A. M., Khan, R. H.: Food recipe recommendation based on ingredients detection using deep learning. In: International Conference on Computing Advancements (ICCA 2022), pp 1–7 (2022)

Shabanabegum, S., Anusha, P., Seethalakshmi, E., Shunmugam, M., Vadivukkarasi, K., Vijayakumar, P.: IOT enabled food recommender with NIR system. Mater. Today Proc. 1, 1–10 (2020)

Wang, W., Duan, L., Jiang, H., Jing, P., Song, X., Nie, L.: Market2Dish: health-aware food recommendation. ACM Trans. Multimed. Comput. Commun. Appl. 17, 1–19 (2021)

Moradi, P., Rezaimehr, F., Ahmadian, S., Jalili, M.: A trust-aware recommender algorithm based on users overlapping community structure. In: 2016 sixteenth international conference on advances in ICT for emerging regions (ICTer), pp 162–167 (2016)

Rostami, M., Oussalah, M., Farrahi, V.: A novel time-aware food recommender-system based on deep learning and graph clustering. IEEE Access 10, 52508–52524 (2022)

Yin, C., Chen, Y., Zuo, W.: Evolutionary social poisson factorizationfor temporal recommendation. Int. J. Comput. Intell. Syst. 14, 185 (2021)

Tran, T.N.T., Atas, M., Felfernig, A., Stettinger, M.: An overview of recommender systems in the healthy food domain. J. Intell. Inform. Syst. 50, 501–526 (2018)

Zhao, J., Yang, S., Huo, H., Sun, Q., Geng, X.: TBTF: an effective time-varying bias tensor factorization algorithm for recommender system. Appl. Intell. 51, 4933–4944 (2021)

Kefalas, P., Manolopoulos, Y.: A time-aware spatio-textual recommender system. Expert Syst. Appl. 78, 396–406 (2017)

Ahmadian, S., Joorabloo, N., Jalili, M., Meghdadi, M., Afsharchi, M., Ren, Y.: A temporal clustering approach for social recommender systems. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp 1139–1144 (2018)

Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adap. Inter. 24, 67–119 (2014)

Yu, X., Jiang, F., Du, J., Gong, D.: A cross-domain collaborative filtering algorithm with expanding user and item features via the latent factor space of auxiliary domains. Pattern Recogn. 94, 96–109 (2019)

Savchenko, A.V., Demochkin, K.V., Grechikhin, I.S.: Preference prediction based on a photo gallery analysis with scene recognition and object detection. Pattern Recogn. 121, 108248 (2022)

Ahmadian, S., Moradi, P., Akhlaghian, F.: An improved model of trust-aware recommender systems using reliability measurements. In: 2014 6th Conference on Information and Knowledge Technology (IKT), pp 98–103 (2014)

Ahmadian, S., Meghdadi, M., Afsharchi, M.: Incorporating reliable virtual ratings into social recommendation systems. Appl. Intell. 48, 4448–4469 (2018)

Ahmadian, S., Afsharchi, M., Meghdadi, M.: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems. Multimed. Tools Appl. 78, 17763–17798 (2019)

Toledo, R.Y., Alzahrani, A.A., Martínez, L.: A food recommender system considering nutritional information and user preferences. IEEE Access 7, 96695–96711 (2019)

Yera, R., Alzahrani, A.A., Martínez, L.: Exploring post-hoc agnostic models for explainable cooking recipe recommendations. Knowl.-Based Syst. 251, 109216 (2022)

Trattner, C., Elsweiler. D.: Food recommender systems: important contributions, challenges and future research directions. ArXiv, vol. abs/1711.02760, pp. 1–16, (2017)

Rezaeimehr, F., Moradi, P., Ahmadian, S., Qader, N.N., Jalili, M.: TCARS: time-and community-aware recommendation system. Futur. Gener. Comput. Syst. 78, 419–429 (2018)

Ahmadian, S., Joorabloo, N., Jalili, M., Ahmadian, M.: Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach. Expert Syst. Appl. 187, 115849 (2022)

Cui, Z., Xu, X., Fei, X., Cai, X., Cao, Y., Zhang, W., et al.: Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 13, 685–695 (2020)

Ngaffo, A.N., El Ayeb, W., Choukair, Z.: A time-aware service recommendation based on implicit trust relationships and enhanced user similarities. J. Ambient. Intell. Humaniz. Comput. 12, 3017–3035 (2021)

Sánchez-Moreno, D., Zheng, Y., Moreno-García, M.N.: Time-aware music recommender systems: modeling the evolution of implicit user preferences and user listening habits in a collaborative filtering approach. Appl. Sci. 10, 5324 (2020)

Chen, C., Toumazou, C.: Personalized expert recommendation systems for optimized nutrition. Trends Pers. Nutr. 46, 309–338 (2019)

Deebak, B., Al-Turjman, F.: A novel community-based trust aware recommender systems for big data cloud service networks. Sustain. Cities Soc. 61, 102274 (2020)

Viktoratos, I., Tsadiras, A., Bassiliades, N.: Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems. Expert Syst. Appl. 101, 78–90 (2018)

Wang, K., Zhang, T., Xue, T., Lu, Y., Na, S.: E-commerce personalized recommendation analysis by deeply-learned clustering. J. Vis. Commun. Image Represent. 71, 102735 (2020)

Gao, X., Feng, F., He, X., Huang, H., Guan, X., Feng, C., et al.: Hierarchical attention network for visually-aware food recommendation. IEEE Trans. Multimed. 22, 1647–1659 (2020)

Asani, E., Vahdat-Nejad, H., Sadri, J.: Restaurant recommender system based on sentiment analysis. Mach. Learn. Appl. 6, 100114 (2021)

Gao, X., Feng, F., Huang, H., Mao, X., Lan, T., Chi, Z.: Food recommendation with graph convolutional network. Inf. Sci. 584, 170–183 (2022)

Trattner, C., Elsweiler, D.: Investigating the healthiness of internet-sourced recipes: implications for meal planning and recommender systems. In: Proceedings of the 26th international conference on world wide web, pp 489–498 (2017)

Rehman, F., Khalid, O., Bilal, K., Madani, S.: Diet-right: a smart food recommendation system. KSII Trans. Internet Inform. Syst. (TIIS) 11, 2910–2925 (2017)

Maia, R., Ferreira, J.C.: Context-aware food recommendation system. Int. Assoc. Eng. 5, 349–356 (2018)

Sookrah, R., Dhowtal, J. D., Nagowah, S.D.: A DASH diet recommendation system for hypertensive patients using machine learning. In: 7th International Conference on Information and Communication Technology (ICoICT), pp 1–6 (2019)

Hernando, A., Bobadilla, J., Ortega, F., Tejedor, J.: Incorporating reliability measurements into the predictions of a recommender system. Inf. Sci. 218, 1–16 (2013)

Ahmadian, S., Joorabloo, N., Jalili, M., Ren, Y., Meghdadi, M., Afsharchi, M.: A social recommender system based on reliable implicit relationships. Knowl.-Based Syst. 192, 105371 (2020)

Bobadilla, J., Gutiérrez, A., Ortega, F., Zhu, B.: Reliability quality measures for recommender systems. Inf. Sci. 442, 145–157 (2018)

Ahmadian, M., Ahmadi, M., Ahmadian, S.: A reliable deep representation learning to improve trust-aware recommendation systems. Expert Syst. Appl. 197, 116697 (2022)

Margaris, D., Vassilakis, C., Spiliotopoulos, D.: What makes a review a reliable rating in recommender systems? Inf. Process. Manag. 57, 102304 (2020)

Ortega, F., Lara-Cabrera, R., González-Prieto, A., Bobadilla, J.: Providing reliability in recommender systems through Bernoulli Matrix Factorization. Inf. Sci. 553, 110–128 (2021)

Moradi, P., Ahmadian, S., Akhlaghian, F.: An effective trust-based recommendation method using a novel graph clustering algorithm. Physica A 436, 462–481 (2015)

Zhang, F., Qu, Y., Xu, Y., Wang, S.: Graph embedding-based approach for detecting group shilling attacks in collaborative recommender systems. Knowl.-Based Syst. 199, 105984 (2020)

Ahmadian, S., Meghdadi, M., Afsharchi, M.: A social recommendation method based on an adaptive neighbor selection mechanism. Inf. Process. Manag. 54, 707–725 (2018)

Moradi, P., Ahmadian, S.: A reliability-based recommendation method to improve trust-aware recommender systems. Expert Syst. Appl. 42, 7386–7398 (2015)

Ahmadian, S., Afsharchi, M., Meghdadi, M.: An effective social recommendation method based on user reputation model and rating profile enhancement. J. Inf. Sci. 45, 607–642 (2018)

Qi, X., Fuller, E., Wu, Q., Wu, Y., Zhang, C.Q.: Laplacian centrality: a new centrality measure for weighted networks. Inf. Sci. 194, 240–253 (2012)

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008, 10008 (2008)

Pecune, F., Callebert, L., Marsella, S.: A recommender system for healthy and personalized recipes recommendations. In: HealthRecSys@ RecSys, pp. 15–20 (2020)

Chavan, P., Thoms, B., Isaacs, J.: A recommender system for healthy food choices: Building a hybrid model for recipe recommendations using big data sets. In: Proceedings of the 54th Hawaii International Conference on System Sciences, pp 3774–3783 (2021)

Tian, Y., Zhang, C., Metoyer, R., Chawla, N.V.: Recipe recommendation with hierarchical graph attention network. Front. Big Data 4, 1–13 (2021)

Bossard, L., Guillaumin, M., Gool, L. V.: Food-101—Mining discriminative components with random forests. In: European conference on computer vision, pp 446–461 (2014)

Min, W., Jiang, S., Sang, J., Wang, H., Liu, X., Herranz, L.: Being a supercook: joint food attributes and multimodal content modeling for recipe retrieval and exploration. IEEE Trans. Multimed. 19, 1100–1113 (2017)