Hausdorff limits of Rolle leaves

Jean-Marie Lion1, Patrick Speissegger2
1IRMAR, Université de Rennes I, Rennes Cedex, France
2Department of Mathematics and Statistics, McMaster University, Hamilton, Canada

Tóm tắt

Let $${\mathcal{R}}$$ be an o-minimal expansion of the real field. We introduce a class of Hausdorff limits, the T ∞-limits over $${\mathcal{R}}$$ , that do not in general fall under the scope of Marker and Steinhorn’s definability-of-types theorem. We prove that if $${\mathcal{R}}$$ admits analytic cell decomposition, then every T ∞-limit over $${\mathcal{R}}$$ is definable in the pfaffian closure of $${\mathcal{R}}$$ .

Tài liệu tham khảo

van den Dries, L.: Limit sets in o-minimal structures. In: Edmundo, M., Richardson, D., Wilkie, A.J. (eds) Proceedings of the RAAG Summer School Lisbon 2003: O-minimal structures, pp. 172–215 (2005) van den Dries L., Speissegger P.: real field with convergent generalized power series. Trans. Am. Math. Soc. 350, 4377–4421 (1998) Lion J.-M., Rolin J.-P.: Volumes, feuilles de Rolle de feuilletages analytiques et théème de Wilkie. Ann. Fac. Sci. Toulouse Math. 7(6), 93–112 (1998) Lion J.-M., Speissegger P.A.: geometric proof of the definability of Hausdorff limits. Selecta Math. (N.S.) 10, 377–390 (2004) Lion J.-M., Speissegger P.: The theorem of the complement for nested sub-pfaffian sets. Duke Math. J. 155, 35–90 (2010) Marker D., Steinhorn C. I.: Definable types in o-minimal theories. J. Symb. Logic 59, 185–198 (1994) Speissegger P.: The Pfaffian closure of an o-minimal structure. J. Reine Angew. Math. 508, 189–211 (1999) Wilkie A.J.: A theorem of the complement and some new o-minimal structures. Sel. Math. (N.S.) 5, 397–421 (1999)