Harnessing the complexity of metabolomic data with chemometrics

Journal of Chemometrics - Tập 28 Số 1 - Trang 1-9 - 2014
Julien Boccard1, Serge Rudaz1
1School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland

Tóm tắt

Because of the ever‐increasing number of signals that can be measured within a single run by modern platforms in analytical chemistry, life sciences datasets become not only gradually larger but also more intricate in their structures. Challenges related to making use of this wealth of data include extracting relevant elements within massive amounts of signals possibly spread across different tables, reducing dimensionality, summarising dynamic information in a comprehensible way and displaying it for interpretation purposes. Metabolomics constitutes a representative example of fast‐moving research fields taking advantage of recent technological advances to provide extensive sample monitoring. Because of the wide chemical diversity of metabolites, several analytical setups are required to provide a broad coverage of complex samples. The integration and visualisation of multiple highly multivariate datasets constitute key issues for effective analysis leading to valuable biological or chemical knowledge. Additionally, high‐order data structures arise from experimental setups involving time‐resolved measurements. These data are intrinsically multiway, and classical statistical tools cannot be applied without altering their organisation with the risk of information loss. Dedicated modelling algorithms, able to cope with the inherent properties of these metabolomic datasets, are therefore mandatory for harnessing their complexity and provide relevant information. In that perspective, chemometrics has a central role to play. Copyright © 2013 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1023/A:1013713905833

10.1016/j.chroma.2007.12.021

10.1146/annurev.arplant.043008.092035

10.1584/jpestics.R07-03

10.1016/j.trac.2007.12.001

10.1016/j.jpba.2005.01.048

10.1038/nprot.2009.237

10.1007/s11101-006-9031-3

10.1039/b516356k

10.1016/j.jchromb.2008.04.031

10.1021/ac8022857

10.1093/bib/bbl009

10.1002/jssc.200900609

10.1007/s11306-007-0099-6

10.1002/cem.1310

10.1007/s11306-011-0330-3

10.1016/j.chemolab.2012.07.010

10.1162/153244303322753616

10.1016/j.forsciint.2011.07.023

10.1093/bioinformatics/btr278

10.1016/j.aca.2011.12.051

10.1016/j.trac.2011.02.007

10.1016/j.febslet.2007.01.036

10.1006/jaer.1996.0042

10.1016/j.tplants.2007.10.006

10.1366/0003702934067694

10.1021/ac051444m

10.1007/s10658-010-9718-6

10.1016/j.chemolab.2012.01.003

10.1016/j.aca.2011.03.025

10.1186/1471-2105-12-254

10.1104/pp.109.146670

10.1016/S0260-8774(03)00064-5

10.1021/ac9001996

10.1016/j.trac.2006.10.005

10.1006/jaer.1999.0428

10.1007/978-3-642-19406-1

10.1371/journal.pone.0038163

10.1016/j.chemolab.2010.04.012

10.1002/cem.811

Wold S, 1987, PLS‐Meeting

10.1002/(SICI)1099-128X(199609)10:5/6<463::AID-CEM445>3.0.CO;2-L

10.1002/cem.667

10.1016/0167-9473(94)90135-X

10.1016/j.chemolab.2005.09.004

10.1002/cem.988

10.1002/cem.1388

10.1007/978-3-540-32827-8_5

10.1007/s11336-011-9206-8

10.15388/Informatica.2011.311

10.1002/(SICI)1099-128X(199709/10)11:5<379::AID-CEM482>3.0.CO;2-8

10.1002/cem.1199

10.1016/j.csda.2004.03.005

10.1016/j.aca.2013.01.022

10.1111/j.1365-313X.2007.03293.x

10.1002/cem.1357

10.1007/s11306-009-0191-1

10.1093/bioinformatics/bth268

10.1093/bioinformatics/bti476

10.1016/j.chemolab.2009.05.004

10.1016/j.aca.2005.02.042

10.1021/tx034212w

10.1002/etc.5620180207

10.1093/bib/bbr071

10.1016/S0169-7439(98)00162-2

10.1007/BF02296656

Rantalainen M, 2008, Piecewise multivariate modelling of sequential metabolic profiling data, BMC Bioinfo., 9

10.1016/j.neunet.2011.05.011

10.1016/0167-9473(94)90132-5

10.1007/BF02289464

10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C

10.1016/j.chemolab.2011.09.001

10.1021/pr900126e