Harnessing the Therapeutic Potential of ‘Rogue’ Antibodies
Tài liệu tham khảo
Kaplon, 2020, Antibodies to watch in 2020, mAbs, 12, 10.1080/19420862.2019.1703531
Redman, 2015, Mechanisms of action of therapeutic antibodies for cancer, Mol. Immunol., 67, 28, 10.1016/j.molimm.2015.04.002
Mayes, 2018, The promise and challenges of immune agonist antibody development in cancer, Nat. Rev. Drug Discov., 17, 509, 10.1038/nrd.2018.75
Dostalek, 2017, Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates, mAbs, 9, 756, 10.1080/19420862.2017.1323160
Avery, 2018, Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics, mAbs, 10, 244, 10.1080/19420862.2017.1417718
Xu, 2019, Structure, heterogeneity and developability assessment of therapeutic antibodies, mAbs, 11, 239, 10.1080/19420862.2018.1553476
Goulet, 2020, Considerations for the design of antibody-based therapeutics, J. Pharm. Sci., 109, 74, 10.1016/j.xphs.2019.05.031
Jarasch, 2015, Developability assessment during the selection of novel therapeutic antibodies, J. Pharm. Sci., 104, 1885, 10.1002/jps.24430
Jain, 2017, Biophysical properties of the clinical-stage antibody landscape, Proc. Natl. Acad. Sci. U. S. A., 114, 944, 10.1073/pnas.1616408114
Raybould, 2019, Five computational developability guidelines for therapeutic antibody profiling, Proc. Natl. Acad. Sci. U. S. A., 116, 4025, 10.1073/pnas.1810576116
Sigounas, 1994, Half-life of polyreactive antibodies, J. Clin. Immunol., 14, 134, 10.1007/BF01541346
Hotzel, 2012, A strategy for risk mitigation of antibodies with fast clearance, mAbs, 4, 753, 10.4161/mabs.22189
Roth, 2004, Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia, Nat. Rev. Drug Discov., 3, 353, 10.1038/nrd1346
Mencher, 2005, Promiscuous drugs compared to selective drugs (promiscuity can be a virtue), BMC Clin. Pharmacol., 5, 3, 10.1186/1472-6904-5-3
Hopkins, 2009, Drug discovery: predicting promiscuity, Nature, 462, 167, 10.1038/462167a
Tiller, 2007, Autoreactivity in human IgG+ memory B cells, Immunity, 26, 205, 10.1016/j.immuni.2007.01.009
Dimitrov, 2013, Antibody polyreactivity in health and disease: statu variabilis, J. Immunol., 191, 993, 10.4049/jimmunol.1300880
Jain, 2019, Antibody specificity and promiscuity, Biochem. J., 476, 433, 10.1042/BCJ20180670
Kanyavuz, 2019, Breaking the law: unconventional strategies for antibody diversification, Nat. Rev. Immunol., 19, 355, 10.1038/s41577-019-0126-7
Shehata, 2019, Affinity maturation enhances antibody specificity but compromises conformational stability, Cell Rep., 28, 3300, 10.1016/j.celrep.2019.08.056
Zhou, 2007, The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies, Cell Host Microbe, 1, 51, 10.1016/j.chom.2007.01.002
Bunker, 2017, Natural polyreactive IgA antibodies coat the intestinal microbiota, Science, 358, 10.1126/science.aan6619
Ochsenbein, 1999, Control of early viral and bacterial distribution and disease by natural antibodies, Science, 286, 2156, 10.1126/science.286.5447.2156
Fransen, 2015, BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity, Immunity, 43, 527, 10.1016/j.immuni.2015.08.011
Chou, 2009, Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans, J. Clin. Invest., 119, 1335, 10.1172/JCI36800
Ehrenstein, 2010, The importance of natural IgM: scavenger, protector and regulator, Nat. Rev. Immunol., 10, 778, 10.1038/nri2849
Coutinho, 1995, Natural autoantibodies, Curr. Opin. Immunol., 7, 812, 10.1016/0952-7915(95)80053-0
Kazatchkine, 2001, Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin, N. Engl. J. Med., 345, 747, 10.1056/NEJMra993360
Lutz, 2009, Naturally occurring auto-antibodies in homeostasis and disease, Trends Immunol., 30, 43, 10.1016/j.it.2008.10.002
Djoumerska-Alexieva, 2016, Intravenous immunoglobulin with enhanced polyspecificity improves survival in experimental sepsis and aseptic systemic inflammatory response syndromes, Mol. Med., 21, 1002, 10.2119/molmed.2014.00224
Bruley-Rosset, 2003, Polyreactive autoantibodies purified from human intravenous immunoglobulins prevent the development of experimental autoimmune diseases, Lab. Investig., 83, 1013, 10.1097/01.LAB.0000077982.70800.02
Haynes, 2005, Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies, Science, 308, 1906, 10.1126/science.1111781
Scheid, 2011, Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding, Science, 333, 1633, 10.1126/science.1207227
Corti, 2013, Broadly neutralizing antiviral antibodies, Annu. Rev. Immunol., 31, 705, 10.1146/annurev-immunol-032712-095916
Liu, 2015, Polyreactivity and autoreactivity among HIV-1 antibodies, J. Virol., 89, 784, 10.1128/JVI.02378-14
Prigent, 2018, Conformational plasticity in broadly neutralizing HIV-1 antibodies triggers polyreactivity, Cell Rep., 23, 2568, 10.1016/j.celrep.2018.04.101
Roskin, 2020, Aberrant B cell repertoire selection associated with HIV neutralizing antibody breadth, Nat. Immunol., 21, 199, 10.1038/s41590-019-0581-0
Mouquet, 2010, Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation, Nature, 467, 591, 10.1038/nature09385
Kang, 1986, Immunoglobulin with complementary paratope and idiotope, J. Exp. Med., 163, 787, 10.1084/jem.163.4.787
Kang, 1987, Idiotypic self binding of a dominant germline idiotype (T15). Autobody activity is affected by antibody valency, J. Exp. Med., 165, 1332, 10.1084/jem.165.5.1332
Kang, 1988, Inhibition of self-binding antibodies (autobodies) by a VH-derived peptide, Science, 240, 1034, 10.1126/science.3368787
Kohler, 1998, Superantibody activities: new players in innate and adaptive immune responses, Immunol. Today, 19, 221, 10.1016/S0167-5699(97)01234-6
Sule, 2011, High-throughput analysis of concentration-dependent antibody self-association, Biophys. J., 101, 1749, 10.1016/j.bpj.2011.08.036
Imkeller, 2018, Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope, Science, 360, 1358, 10.1126/science.aar5304
Kaminski, 1999, The role of homophilic binding in anti-tumor antibody R24 recognition of molecular surfaces. Demonstration of an intermolecular β-sheet interaction between VH domains, J. Biol. Chem., 274, 5597, 10.1074/jbc.274.9.5597
Rouge, 2020, Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab, Science, 367, 1224, 10.1126/science.aaz9356
Bryan, 2011, Physical and biological properties of homophilic therapeutic antibodies, Cancer Immunol. Immunother., 60, 507, 10.1007/s00262-010-0952-8
Zhao, 2005, Therapeutic applications of superantibodies, Drug Discov. Today, 10, 1231, 10.1016/S1359-6446(05)03530-0
Diebolder, 2014, Complement is activated by IgG hexamers assembled at the cell surface, Science, 343, 1260, 10.1126/science.1248943
Maddur, 2020, Natural antibodies: from first-line defense against pathogens to perpetual immune homeostasis, Clin. Rev. Allergy Immunol., 58, 213, 10.1007/s12016-019-08746-9
Satoh, 2012, Prevalence and sociodemographic correlates of antinuclear antibodies in the United States, Arthritis Rheumat., 64, 2319, 10.1002/art.34380
Parks, 2014, Reproductive and hormonal risk factors for antinuclear antibodies (ANA) in a representative sample of U.S. women, Cancer Epidemiol. Biomarkers Prevent., 23, 2492, 10.1158/1055-9965.EPI-14-0429
Slight-Webb, 2016, Autoantibody-positive healthy individuals display unique immune profiles that may regulate autoimmunity, Arthritis Rheumatol., 68, 2492, 10.1002/art.39706
Cabral-Marques, 2018, GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis, Nat. Commun., 9, 5224, 10.1038/s41467-018-07598-9
Meyer, 2016, AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies, Cell, 166, 582, 10.1016/j.cell.2016.06.024
Hansen, 2012, Targeting cancer with a lupus autoantibody, Sci. Transl. Med., 4, 10.1126/scitranslmed.3004385
Weisbart, 2015, DNA-dependent targeting of cell nuclei by a lupus autoantibody, Sci. Rep., 5, 12022, 10.1038/srep12022
Noble, 2015, Optimizing a lupus autoantibody for targeted cancer therapy, Cancer Res., 75, 2285, 10.1158/0008-5472.CAN-14-2278
Noble, 2016, DNA-damaging autoantibodies and cancer: the lupus butterfly theory, Nat. Rev. Rheumatol., 12, 429, 10.1038/nrrheum.2016.23
Rattray, 2018, Re-engineering and evaluation of anti-DNA autoantibody 3E10 for therapeutic applications, Biochem. Biophys. Res. Commun., 496, 858, 10.1016/j.bbrc.2018.01.139
Noble, 2014, A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells, Sci. Rep., 4, 5958, 10.1038/srep05958
Chen, 2016, A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors, Oncotarget, 7, 59965, 10.18632/oncotarget.11015
Bernatsky, 2013, Cancer risk in systemic lupus: an updated international multi-centre cohort study, J. Autoimmun., 42, 130, 10.1016/j.jaut.2012.12.009