Harmonizing structural mass spectrometry analyses in the mass spec studio
Tài liệu tham khảo
Majumdar, 2015, Hydrogen-deuterium exchange mass spectrometry as an emerging analytical tool for stabilization and formulation development of therapeutic monoclonal antibodies, J. Pharm. Sci., 104, 327, 10.1002/jps.24224
Lagerström, 2008, Structural diversity of G protein-coupled receptors and significance for drug discovery, Nat. Rev. Drug Discov., 7, 339, 10.1038/nrd2518
Wells, 1987, Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering, Proc. Natl. Acad. Sci. U. S. A., 84, 5167, 10.1073/pnas.84.15.5167
Murphy, 2009, Alteration of enzyme specificity by computational loop remodeling and design, Proc. Natl. Acad. Sci. U. S. A., 106, 9215, 10.1073/pnas.0811070106
Hura, 2009, Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS), Nat. Methods, 6, 606, 10.1038/nmeth.1353
Muench, 2019, The expanding toolkit for structural biology: synchrotrons, X-ray lasers and cryoEM, IUCrJ., 6, 167, 10.1107/S2052252519002422
Liu, 2005, Recent developments in structural proteomics for protein structure determination, Proteomics., 5, 2056, 10.1002/pmic.200401104
Wuthrich, 1990, Protein structure determination in solution by NMR spectroscopy, J. Biol. Chem., 265, 22059, 10.1016/S0021-9258(18)45665-7
Guo, 2018, In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment, Cell, 172, 696, 10.1016/j.cell.2017.12.030
Schmidt, 2017, Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies, Curr. Opin. Struct. Biol., 46, 157, 10.1016/j.sbi.2017.10.005
Bertram, 2017, Cryo-EM structure of a Pre-catalytic human spliceosome primed for activation, Cell, 170, 701, 10.1016/j.cell.2017.07.011
Donnarumma, 2016, The role of structural proteomics in vaccine development: recent advances and future prospects, Expert Rev. Proteomics., 13, 55, 10.1586/14789450.2016.1121113
Politis, 2014, A mass spectrometry-based hybrid method for structural modeling of protein complexes, Nat. Methods, 11, 403, 10.1038/nmeth.2841
Konermann, 2008, Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches, J. Mass Spectrom., 43, 1021, 10.1002/jms.1435
Sharon, 2007, The role of mass spectrometry in structure elucidation of dynamic protein complexes, Annu. Rev. Biochem., 76, 167, 10.1146/annurev.biochem.76.061005.090816
Lössl, 2016, The diverse and expanding role of mass spectrometry in structural and molecular biology, EMBO J, 35, 2634, 10.15252/embj.201694818
O’Reilly, 2018, Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology, Nat. Struct. Mol. Biol., 25, 10.1038/s41594-018-0147-0
Chavez, 2016, In vivo conformational dynamics of Hsp90 and its interactors, Cell Chem. Biol., 23, 716, 10.1016/j.chembiol.2016.05.012
Trinkle-Mulcahy, 2019, Recent advances in proximity-based labeling methods for interactome mapping, F1000Research, 8, 135, 10.12688/f1000research.16903.1
Gingras, 2019, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles, Curr. Opin. Chem. Biol., 48, 44, 10.1016/j.cbpa.2018.10.017
Branon, 2018, Efficient proximity labeling in living cells and organisms with TurboID, Nat. Biotechnol., 36, 880, 10.1038/nbt.4201
Ben-Nissan, 2018, The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes, Curr. Opin. Chem. Biol., 42, 25, 10.1016/j.cbpa.2017.10.026
Kelly, 2005, How to study proteins by circular dichroism, Biochim. Biophys. Acta, 1751, 119, 10.1016/j.bbapap.2005.06.005
Harvey, 2019, Relative interfacial cleavage energetics of protein complexes revealed by surface collisions, Proc. Natl. Acad. Sci. U. S. A., 116, 8143, 10.1073/pnas.1817632116
Bullock, 2018, Modeling protein complexes using restraints from crosslinking mass spectrometry, Structure., 1
Filella-Merce, 2019, Quantitative Structural Interpretation of Protein Crosslinks, Structure, 1
Makarov, 2019, Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity, Nat. Commun., 10, 1, 10.1038/s41467-019-11063-6
Chen, 2018, Protein dynamics in solution by quantitative crosslinking/mass spectrometry, Trends Biochem. Sci., 43, 908, 10.1016/j.tibs.2018.09.003
Konermann, 2011, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev., 40, 1224, 10.1039/C0CS00113A
Percy, 2012, Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry-a review, Anal. Chim. Acta, 721, 7, 10.1016/j.aca.2012.01.037
Schmidt, 2017, Surface accessibility and dynamics of macromolecular assemblies probed by covalent labeling mass spectrometry and integrative modeling, Anal. Chem., 89, 1459, 10.1021/acs.analchem.6b02875
Xie, 2017, Quantitative protein topography measurements by high resolution hydroxyl radical protein footprinting enable accurate molecular model selection, Sci. Rep., 7, 4552, 10.1038/s41598-017-04689-3
Limpikirati, 2018, Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions, Methods., 144, 79, 10.1016/j.ymeth.2018.04.002
Aprahamian, 2018, Rosetta protein structure prediction from hydroxyl radical protein Footprinting mass spectrometry data, Anal. Chem., 90, 7721, 10.1021/acs.analchem.8b01624
Ryu, 2014
Perez-Riverol, 2014, Open source libraries and frameworks for mass spectrometry based proteomics: a developer’s perspective, Biochim. Biophys. Acta - Proteins Proteomics., 1844, 63, 10.1016/j.bbapap.2013.02.032
Claesen, 2017, Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry, Mass Spectrom. Rev., 36, 649, 10.1002/mas.21519
Iacobucci, 2017, To be or not to be? Five guidelines to avoid Misassignments in cross-linking/mass spectrometry, Anal. Chem., 89, 7832, 10.1021/acs.analchem.7b02316
Tsiamis, 2019, One thousand and one software for proteomics: Tales of the toolmakers of science, J. Proteome Res., 18, 3580, 10.1021/acs.jproteome.9b00219
Hoopmann, 2015, Kojak: efficient analysis of chemically cross-linked protein complexes, J. Proteome Res., 14, 2190, 10.1021/pr501321h
Liu, 2017, Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification, Nat. Commun., 8
Iacobucci, 2018, A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions, Nat. Protoc., 13, 10.1038/s41596-018-0068-8
Mendes, 2019, An integrated workflow for crosslinking mass spectrometry, Mol. Syst. Biol., 15, 1, 10.15252/msb.20198994
Z.-L. Chen, J.-M. Meng, Y. Cao, J.-L. Yin, R.-Q. Fang, S.-B. Fan, C. Liu, W.-F. Zeng, Y.-H. Ding, D. Tan, L. Wu, W.-J. Zhou, H. Chi, R.-X. Sun, M.-Q. Dong, S.-M. He, A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides, Nat. Commun. 10 (2019). doi:https://doi.org/10.1038/s41467-019-11337-z.
Lima, 2014, SIM-XL: a powerful and user-friendly tool for peptide cross-linking analysis, J. Proteome, 129, 51, 10.1016/j.jprot.2015.01.013
Lu, 2018, Identification of MS-cleavable and noncleavable chemically cross-linked peptides with MetaMorpheus, J. Proteome Res., 17, 2370, 10.1021/acs.jproteome.8b00141
Trnka, 2014, Matching cross-linked peptide spectra: only as good as the worse identification, Mol. Cell. Proteomics, 13, 420, 10.1074/mcp.M113.034009
Pascal, 2012, HDXWorkbench: software for the analysis of H/D exchange MS data, J. Am. Soc. Mass Spectrom., 23, 1512, 10.1007/s13361-012-0419-6
Kan, 2019, ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis, Anal. Chem., 91, 7474, 10.1021/acs.analchem.9b01682
Guttman, 2013, Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra, J. Am. Soc. Mass Spectrom., 24, 1906, 10.1007/s13361-013-0727-5
Fellers, 2015, ProSight lite: graphical software to analyze top-down mass spectrometry data, Proteomics., 15, 1235, 10.1002/pmic.201400313
Marty, 2015, Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles, Anal. Chem., 87, 4370, 10.1021/acs.analchem.5b00140
Allison, 2015, Quantifying the stabilizing effects of protein-ligand interactions in the gas phase, Nat. Commun., 6, 10.1038/ncomms9551
Schweppe, 2016, XLinkDB 2.0: Integrated, large-scale structural analysis of protein crosslinking data, Bioinformatics, 32, 2716, 10.1093/bioinformatics/btw232
Webb, 2018, Integrative structure modeling with the integrative modeling platform, Protein Sci., 27, 245, 10.1002/pro.3311
Rey, 2014, Mass spec studio for integrative structural biology, Structure., 22, 1538, 10.1016/j.str.2014.08.013
Van Rossum
Van Der Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, S. 1. 0 Contributors, SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python, (2019) 1–22. http://arxiv.org/abs/1907.10121.
Röst, 2014, pyOpenMS: A Python-based interface to the OpenMS mass-spectrometry algorithm library, Proteomics, 14, 74, 10.1002/pmic.201300246
Sarpe, 2017, Supporting metabolomics with adaptable software: design architectures for the end-user, Curr. Opin. Biotechnol., 43, 110, 10.1016/j.copbio.2016.11.001
MacLean, 2010, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics., 26, 966, 10.1093/bioinformatics/btq054
Pluskal, 2010, MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data, BMC Bioinformatics., 11, 395, 10.1186/1471-2105-11-395
Tyanova, 2016, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, 13, 731, 10.1038/nmeth.3901
Kim, 2014, MS-GF+ makes progress towards a universal database search tool for proteomics, Nat. Commun., 5, 5277, 10.1038/ncomms6277
Alka, 2019
Walzthoeni, 2012, False discovery rate estimation for cross-linked peptides identified by mass spectrometry, Nat. Methods, 9, 901, 10.1038/nmeth.2103
Pettersen, 2004, UCSF chimera - a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Sarpe, 2016, High sensitivity crosslink detection coupled with integrative structure modeling in the mass spec studio, Mol. Cell. Proteomics, 15, 3071, 10.1074/mcp.O116.058685
Sinz, 2006, Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions, Mass Spectrom. Rev., 25, 663, 10.1002/mas.20082
Fioramonte, 2018, XPlex: an effective, multiplex cross-linking chemistry for acidic residues, Anal. Chem., 90, 6043, 10.1021/acs.analchem.7b05135
Rappsilber, 2011, The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes, J. Struct. Biol., 173, 530, 10.1016/j.jsb.2010.10.014
Giese, 2016, Optimized fragmentation regime for diazirine photo-cross-linked peptides, Anal. Chem., 88, 8239, 10.1021/acs.analchem.6b02082
Ziemianowicz, 2019, Photo-cross-linking mass spectrometry and integrative modeling enables rapid screening of antigen interactions involving bacterial transferrin receptors, J. Proteome Res., 18, 934, 10.1021/acs.jproteome.8b00629
Engen, 2009, Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS, Anal. Chem., 81, 7870, 10.1021/ac901154s
Konermann, 2011, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev., 40, 1224, 10.1039/C0CS00113A
Oganesyan, 2018, Contemporary hydrogen deuterium exchange mass spectrometry, Methods., 144, 27, 10.1016/j.ymeth.2018.04.023
Chalmers, 2011, Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions, Expert Rev. Proteomics., 8, 43, 10.1586/epr.10.109
Engen, 2015, Analytical aspects of hydrogen exchange mass spectrometry, Annu. Rev. Anal. Chem., 8, 127, 10.1146/annurev-anchem-062011-143113
Slysz, 2008, Restraining expansion of the peak envelope in H/D exchange-MS and its application in detecting perturbations of protein structure/dynamics, Anal. Chem., 80, 7004, 10.1021/ac800897q
Hotchko, 2006, Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments, Protein Sci., 15, 583, 10.1110/ps.051774906
Ziemianowicz, 2017, Amino acid insertion frequencies arising from photoproducts generated using aliphatic Diazirines, J. Am. Soc. Mass Spectrom., 28, 2011, 10.1007/s13361-017-1730-z
Ziemianowicz, 2019, Quantitative analysis of protein covalent labeling mass spectrometry data in the mass spec studio, Anal. Chem., 91, 8492, 10.1021/acs.analchem.9b01625
Jumper, 2012, High-resolution mapping of carbene-based protein footprints, Anal. Chem., 84, 4411, 10.1021/ac300120z
Van Zundert, 2016, The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes, J. Mol. Biol., 428, 720, 10.1016/j.jmb.2015.09.014
Rout, 2019, Principles for integrative structural biology studies, Cell., 177, 1384, 10.1016/j.cell.2019.05.016
M.J. Trnka, R. Pellarin, P.J. Robinson, Role of integrative structural biology in understanding transcriptional initiation, Methods. (2019) 1–19. doi:https://doi.org/10.1016/j.ymeth.2019.03.009.
Robinson, 2015, Molecular architecture of the yeast mediator complex, Elife., 4, 1, 10.7554/eLife.08719
Erzberger, 2014, Molecular architecture of the 40S · eIF1 · eIF3 translation initiation complex, Cell., 158, 1123, 10.1016/j.cell.2014.07.044
Burley, 2017, PDB-dev: a prototype system for depositing integrative/hybrid structural models, Structure., 25, 1317, 10.1016/j.str.2017.08.001
Vallat, 2018, Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules, Structure, 26, 894, 10.1016/j.str.2018.03.011
Robinson, 2017, From molecular chaperones to membrane motors: through the lens of a mass spectrometrist, Biochem. Soc. Trans., 45, 251, 10.1042/BST20160395
Masson, 2019, Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments., Nature Methods, 16, 595, 10.1038/s41592-019-0459-y