Harmonic morphisms from complex projective spaces

Geometriae Dedicata - Tập 53 - Trang 155-161 - 1994
Sigmundur Gudmundsson1
1Department of Mathematics, University of Lund, Lund, Sweden

Tóm tắt

In this paper we study harmonic morphisms ∅ :U ⊂ ℂP m →N 2 from open subsets of complex projective spaces to Riemann surfaces. We construct many new examples of such maps which are not holomorphic with respect to the standard Kähler structure on ℂP m.

Tài liệu tham khảo

Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformation of metrics,Research Notes in Mathematics 87, Pitman (1983). Baird, P.: Harmonic morphisms and circle actions on 3- and 4-manifolds,Ann. Inst. Fourier, Grenoble 40 (1990), 177–212. Baird, P.: Riemannian twistors and Hermitian structures on low-dimensional space forms,J. Math. Phys. 33 (1992), 3340–3355. Baird, P. and Ells, J.: A conservation law for harmonic maps, inGeometry Symposium Utrecht 1980, Lecture Notes in Math. 894, Springer, 1981, pp. 1–25. Baird, P. and Wood, J. C.: Bernstein theorems for harmonic morphisms from ℝ3 andS 3,Math. Ann. 280 (1988), 579–603. Baird, P. and Wood, J. C.: Harmonic morphisms and conformal foliation by geodesics of three-dimensional space forms,J. Australian Math. Soc. (A)51 (1991), 118–153. Blanchard, A.: Sur les variétés analytiques complexes,Ann. Sci. École Norm. Super. 73 (1956), 157–202. Darling, R. W. R.: Martingales in manifolds — definition, examples and behaviour under maps, inSéminaire de Probabilités XVI 1980/81. Supplément: Géométrie Differentielle Stochastique, Lecture Notes in Math. 921, Springer, 1982. Eells, J. and Sampson, J. H.: Harmonic mappings of Riemannian manifolds,Amer. J. Math. 86 (1964), 109–160. Fuglede, B.: Harmonic morphisms between Riemannian manifolds,Ann. Inst. Fourier,28 (1978), 107–144. Gudmundsson, S.: The geometry of harmonic morphisms, Ph.D. thesis, University of Leeds, 1992. Gudmundsson, S.: Harmonic morphisms between spaces of constant curvature,Proc. Edinburgh Math. Soc. 36 (1992), 133–143. Gudmundsson, S. and Wood, J. C.: Multivalued harmonic morphisms,Math. Scand. 73 (1993), 127–155. Ishihara, T.: A mapping of Riemannian manifolds which preserves harmonic functions,J. Math. Kyoto Univ. 19 (1979), 215–229. Wolf, J. A.: Elliptic spaces in Grassmann manifolds,Illinois J. Math. 7 (1963), 447–462. Wood, J. C.: Harmonic morphisms and Hermitian structures on Einstein 4-manifolds,Int. J. Math. 3 (1992), 415–439.