Hardy type inequalities with spherical derivatives

Neal Bez1, Shuji Machihara1, Tohru Ozawa2
1Department of Mathematics Faculty of Science, Saitama University, Saitama, Japan
2Department of Applied Physics, Waseda University, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24, 177–209 (2012)

Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995)

Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871–1885 (2008)

Bez, N., Jeavons, C., Ozawa, T., Sugimoto, M.: Stability of trace theorems on the sphere. J. Geom. Anal. 28, 1456–1476 (2018)

Bez, N., Machihara, S., Sugimoto, M.: Extremisers for the trace theorem on the sphere. Math. Res. Lett. 23, 633–647 (2016)

Bez, N., Saito, H., Sugimoto, M.: Applications of the Funk-Hecke theorem to smoothing and trace estimates. Adv. Math. 285, 1767–1795 (2015)

Birman, MSh, Laptev, A.: The negative discrete spectrum of a two-dimensional Schrödinger operator. Commun. Pure Appl. Math. 49, 967–997 (1996)

Bogdan, K., Dyda, B., Kim, P.: Hardy inequalities and non-explosion results for semigroups. Potential Anal. 44, 229–247 (2016)

Costa, D.G.: Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities. J. Math. Anal. Appl. 337, 311–317 (2008)

Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in $$L^p(\Omega )$$. Math. Z. 227, 511–523 (1998)

Dolbeault, J., Volzone, B.: Improved Poincaré inequalities. Nonlinear Anal. 75, 5985–6001 (2012)

Ekholm, T., Frank, R.L.: On Lieb-Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264, 725–740 (2006)

Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349, 1–57 (2011)

Ghoussoub, N., Moradifam, A.: On the best possible remaining term in the Hardy inequality. Proc. Natl. Acad. Sci. USA 1305, 13746–13751 (2008)

Ioku, N., Ishiwata, M., Ozawa, T.: Sharp remainder of a critical Hardy inequality. Arch. Math. (Basel) 1, 65–71 (2016)

Ioku, N., Ishiwata, M., Ozawa, T.: Hardy type inequalities in $$L^p$$ with sharp remainders. J. Inequal. Appl. Paper No. 5 (2017)

Ioku, N., Ishiwata, M.: A scale invariant form of a critical Hardy inequality. Int. Math. Res. Not. IMRN 18, 8830–8846 (2015)

Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

Machihara, S., Ozawa, T., Wadade, H.: Hardy type inequalities on balls. Tohoku Math. J. 65, 321–330 (2013)

Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Rellich inequality. Math. Z. 286, 1367–1373 (2017)

Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Hardy type inequalities with remainder terms in the framework of equalities. Adv. Stud. Pure Math. 81, 247–258 (2016)

Ruzhansky, M., Suragan, D.: Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups. Adv. Math. 317, 799–822 (2017)

Sano, M., Takahashi, F.: Scale invariance structures of the critical and the subcritical Hardy inequalities and their improvements. Calc. Var. Partial Differ. Equ. 56, 56–69 (2017)

Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J. (1971)

Takahashi, F.: A simple proof of Hardy’s inequality in a limiting case. Arch. Math. (Basel) 104, 77–82 (2015)

Walther, B.: Regularity, decay, and best constants for dispersive equations. J. Funct. Anal. 189, 325–335 (2002)

Yafaev, D.: Sharp constants in the Hardy-Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)