Hardy-Rellich Type Inequalities Associated with Dunkl Operators

Chinese Annals of Mathematics, Series B - Tập 43 - Trang 281-294 - 2022
Li Tang1, Haiting Chen1, Shoufeng Shen1, Yongyang Jin1
1Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China

Tóm tắt

In this paper, the authors obtain the Dunkl analogy of classical Lp Hardy inequality for p > N + 2γ with sharp constant $${\left({{{p - N - 2\gamma} \over p}} \right)^p}$$ , where 2γ is the degree of weight function associated with Dunkl operators, and Lp Hardy inequalities with distant function in some G-invariant domains. Moreover they prove two Hardy-Rellich type inequalities for Dunkl operators.

Tài liệu tham khảo

Ancona, A., On strong barriers and an inequality of Hardy for domains in ℝ2, J. Lond. Math. Soc., 34, 1986, 274–290. Balinsky, A. A. and Evans, W. D., Some recent results on Hardy-type inequalities, Appl. Math. Inf. Sci., 4(2), 2010, 191–208. Balinsky, A. A., Evans, W. D. and Lewis, R. T., The Analysis and Geometry of Hardy’s Inequality, Universitext, Springer-Varleg, Cham, 2015. Barbatis, G., Filippas, S. and Tertikas, A., A unified approach to improved Lp Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356, 2001, 2169–2196. Brezis, H. and Marcus, M., Hardy’s inequalities revisited, Annali della Scuola normale superiore di Pisa, Classe di scienze, 25(1), 1997, 217–237. Dai, F. and Xu, Y., Analysis on h-Harmonics and Dunkl Transforms, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser/Springer-Verlag, Basel, 2015. D’Ambrosio, L. and Dipierro, S., Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poinc. Anal. Non Lin., 31, 2014, 449–475. Davies, E. B., The Hardy constant, Q. J. Math. Oxf., 46(2), 1995, 417–431. Giga, Y. and Pisante, G., On representation of boundary integrals involving the mean curvature for mean-convex domains, Geom. Part. Dif. Eq., CRM Series, 15, Ed. Norm., Pisa, 2013, 171–187. Gromov, M., Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, 61(1), 1991, 9–123. Hardy, G. H., An inequality between integrals, Messenger Math., 54, 1925, 150–156. Jerome, A. and Goldstein, I. K., The Hardy inequality and nonlinear parabolic equations on Carnot groups, Nonlinear Analysis, 69, 2008, 4643–4653. Jin, Y. Y., Hardy-type inequalities on the H-type groups and anisotropic Heisenberg groups, Chin. Math. Ann. B, 29(5), 2008, 567–574. Jin, Y. Y. and Han, Y. Z., Weighted rellich inequality on H-type groups and nonisotropic heisenberg groups, Journal of Inequalities and Applications, 2010, 2010, 1–17. Jin, Y. Y. and Shen, S. F., Weighted hardy and rellich inequality on carnot groups, Archiv Der Mathematik, 96, 2011, 263–271. Keller, M., Pinchover, Y. and Pogorzelski, F., Optimal hardy inequalities for Schrödinger operators on graphs, Communications in Mathematical Physics, 358(3), 2016, 1–24. Lewis, R. T., Li, J. and Li, Y., A geometric characterization of a sharp Hardy inequality, Journal of Functional Analysis, 262(7), 2012, 3159–3185. Marcus, M., Mizel, V. and Pinchover, Y., On the best constant for Hardy’s inequality in ℝ n, Transactions of the American Mathematical Society, 350(8), 1998, 3237–3255. Maz’ya, V. G., Sobolev Spaces, Springer-Verlag, Berlin, 1985. Psaradakis, G., L1 Hardy inequalities with weights, J. Geom. Anal., 23, 2013, 1703–1728. Rösler, M., Dunkl Operators: Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, 1817, 2002, 93–135. Tertikas, A. and Zographopoulos, N., Best constant in the Hardy-Rellich inequalities and related improvements, Adv. Math., 209, 2007, 407–459. Velicu, A., Hardy-type inequalities for Dunkl operators, 2019, arXiv:1901.08866v2.