Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery

Ionics - Tập 26 - Trang 4523-4532 - 2020
Qingyin Zhang1, Xianmei Deng1, Mengge Ji1, Yufan Li2, Zhiqiang Shi2
1State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, People’s Republic of China
2Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin, People’s Republic of China

Tóm tắt

Hard carbon is a good anode material for sodium batteries due to its disordered structures and large interlayer spacing. However, the high cost and low initial Coulomb efficiencies limit its large-scale application. In this study, we introduce a new way to produce the resorcinol formaldehyde resin-derived hard carbon materials by spray drying and carbonization methods. The SEM and XRD indicate that the hard carbon materials have fine spherule shape and larger layer spacing (d002 = 0.4 nm). With the electrochemical performance test, we confirmed that RFHC-1100 sample exhibited an outstanding reversible specific capacity of 321 mAh/g and high initial Coulomb efficiency of 82% at the current rate of 0.1 C. In addition, the sodium-ion storage mechanism is analyzed through GITT. This work provides a simple and efficient way to convert resorcinol formaldehyde resins into high-capacity hard carbon materials, which opens up new avenues for the preparation of anode materials for sodium-ion batteries.

Tài liệu tham khảo

Myung ST, Hwang JY, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/c6cs00776g Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025. https://doi.org/10.1149/2.0251701jes Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 57:102–120. https://doi.org/10.1002/anie.201703772 Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958. https://doi.org/10.1002/adfm.201200691 Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16:168–177. https://doi.org/10.1016/j.cossms.2012.04.002 Yabuuchi N, Komaba S (2014) Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci Technol Adv Mater 15:043501. https://doi.org/10.1088/1468-6996/15/4/043501 Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics Diff React 28–30(part-P2):1172–1175. https://doi.org/10.1016/0167-2738(88)90351-7 Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, Cao Y (2019) Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 64:103903. https://doi.org/10.1016/j.nanoen.2019.103903 Sun Q, Ren QQ, Li H, Fu ZW (2011) High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem Commun 13:1462–1464. https://doi.org/10.1016/j.elecom.2011.09.020 Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT (2013) An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. J Adv Mater 25:3045–3049. https://doi.org/10.1002/adma.201204877 Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu YS, Li H, Yang XQ, Chen L, Huang X (2013) A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun 4:2365. https://doi.org/10.1038/ncomms3365 Zhang XQ, Zhao YC, Wang CG, Li X, Liu JD, Yue GH, Zhou ZD (2016) Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. J Mater Sci 51:9296–9305. https://doi.org/10.1007/s10853-016-0176-1 Wang G, Su D (2013) Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7:11218–11226. https://doi.org/10.1021/nn405014d Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. https://doi.org/10.1002/aenm.201200026 Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867. https://doi.org/10.1002/adfm.201100854 Dahn JR, Stevens DA (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273. https://doi.org/10.1149/1.1393348 Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659. https://doi.org/10.1002/aenm.201600659 Zhang N, Liu Q, Chen W, Wan M, Li X, Wang L, Xue L, Zhang W (2018) High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J Power Sources 378:331–337. https://doi.org/10.1016/j.jpowsour.2017.12.054 Mitlin D (2015) High density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129. https://doi.org/10.1021/nn502045y Jin J, Yu BJ, Shi ZQ, Wang CY, Chong CB (2014) Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 272:800–807. https://doi.org/10.1016/j.jpowsour.2014.08.119 Luo W, Schardt J, Bommier C, Wang B, Razink J, Simonsen J, Ji X (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1:10662. https://doi.org/10.1039/c3ta12389h Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77. https://doi.org/10.1039/c4ta05451b Wang H, Ding J, Li Z (2015) Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Enery Environ Sci 8:941–955. https://doi.org/10.1039/C4EE02986K Jin J, Shi ZQ, Wang CY (2014) Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta 141:302–310. https://doi.org/10.1016/j.electacta.2014.07.079 Wang Hl, Shi ZQ, Jin J, Chong CB, Wang CY (2015) Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J Electroanal Chem 755:87–91. https://doi.org/10.1016/j.jelechem.2015.07.032 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033. https://doi.org/10.1038/ncomms5033 Wang J, Yan L, Ren Q, Fan L, Zhang F, Shi Z (2018) Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim Acta 291:88–196. https://doi.org/10.1016/j.electacta.2018.08.136 Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787. https://doi.org/10.1021/nl3016957 Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403. https://doi.org/10.1002/aenm.201700403 Wu L, Buchholz D, Vaalma C, Giffin GA, Passerini S (2016) Apple biowaste derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem 3:292–298. https://doi.org/10.1002/celc.201500437 Li Z, Jian Z, Wang X, Rodriguez-Perez IA, Bommier C, Ji X (2017) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun (Camb) 53:2610–2613. https://doi.org/10.1039/c7cc00301c Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Transact A Math Phys Eng Sci 362:2477–2512. https://doi.org/10.1098/rsta.2004.1452 Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922. https://doi.org/10.1021/jacs.6b06673 Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 10:42796–42803. https://doi.org/10.1021/acsami.8b13160 Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater 237:23–30. https://doi.org/10.1016/j.micromeso.2016.09.013 Zhu Z, Liang F, Zhou Z, Zeng X, Wang D, Dong P, Zhao J, Sun S, Zhang Y, Li X (2018) Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J Mater Chem A 6:1513–1522. https://doi.org/10.1039/c7ta07951f Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288. https://doi.org/10.1016/j.nanoen.2015.10.034 Simone V, Boulineau A, de Geyer A, Rouchon D, Simonin L, Martinet S (2016) Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure. J Energy Chem 25:761–768. https://doi.org/10.1016/j.jechem.2016.04.016 Wang K, Jin Y, Sun S, Huang Y, Peng J, Luo J, Zhang Q, Qiu Y, Fang C, Han J (2017) Low-cost and high-performance hard carbon anode materials for sodium-ion batteries. ACS Omega 2:1687–1695. https://doi.org/10.1021/acsomega.7b00259 Bommier C, Surta TW, Dolgos M, Ji X (2015) New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 15:5888–5892. https://doi.org/10.1021/acs.nanolett.5b01969 Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T (2018) From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater 8:1703268. https://doi.org/10.1002/aenm.201703268 Wang P, Fan L, Yan L, Shi Z (2019) Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. J Alloys Compd 775:1028–1035. https://doi.org/10.1016/j.jallcom.2018.10.180 Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J (2018) Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127:658–666. https://doi.org/10.1016/j.carbon.2017.11.054