Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia

Nature Neuroscience - Tập 18 Số 5 - Trang 631-636 - 2015
Axel Freischmidt1, Thomas Wieland2, Benjamin Richter3, Wolfgang Ruf1, Véronique Schaeffer3, Kathrin Müller1, Nicolai Marroquin1, Frida Nordin4, Annemarie Hübers1, Patrick Weydt1, Susana Pinto5, Rayomond Press6, Stéphanie Millecamps7, Nicolas Molko8, Émilien Bernard9, Claude Desnuelle10, Marie‐Hélène Soriani10, Johannes Dorst1, Elisabeth Graf2, Ulrika Nordström4, Marisa S. Feiler1, Stefan Putz11, Tobias M. Boeckers11, Thomas Meyer12, Andrea Sylvia Winkler13, Juliane Winkelman13, Mamede de Carvalho5, Dietmar Rudolf Thal14, Markus Otto1, Thomas Brännström15, Alexander E. Volk16, Petri Kursula17, Karin M. Danzer1, Peter Lichtner2, Ivan Đikić3, Thomas Meitinger18, Albert C. Ludolph1, Tim M. Strom18, Peter M. Andersen4, Jochen H. Weishaupt1
1Department of Neurology, Ulm University, Ulm, Germany
2Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
3Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
4Department of Pharmacology and Clinical Neurosience, Umeå University, Umeå, Sweden
5Institute of Physiology and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
6Department of Neurology, Karolinska Hospital Huddinge, Stockholm, Sweden
7Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, Inserm U1127, Sorbonne Universités, Université Pierre et Marie (UPMC) P6 UMRS1127, Paris, France
8Centre Hospitalier Territorial Gaston Bourret, Noumea, New Caledonia
9Centre de référence SLA, Hôpital Neurologique Pierre Wertheimer, CHU de Lyon, Bron, France
10Centre de Référence Maladies Neuromusculaires et SLA, Hôpital Archet, CHU de Nice, France
11Institute of Anatomy and Cell Biology, Ulm University, Faculty of Medicine, Ulm, Germany
12Charité University Hospital, Humboldt-University, Berlin, Germany
13Department of Neurology, Technical University of Munich, Munich, Germany
14Institute of Pathology, Laboratory of Neuropathology, Ulm University, Ulm, Germany
15Department of Medical Biosciences, Umeå University, Umeå, Sweden
16Institute of Human Genetics, Ulm University, Ulm, Germany
17University of Oulu Biocenter, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
18Institute of Human Genetics, Technische Universität München, Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersen, P.M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

Weidberg, H. & Elazar, Z. TBK1 mediates crosstalk between the innate immune response and autophagy. Sci. Signal. 4, pe39 (2011).

Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

Komatsu, M., Kageyama, S. & Ichimura, Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol. Res. 66, 457–462 (2012).

Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

Exome Aggregation Consortium. ExAC Brower Beta. http://exac.broadinstitute.org (5 October 2014).

Abhinav, K. et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology 29, 44–48 (2007).

Uenal, H. et al. Incidence and geographical variation of amyotrophic lateral sclerosis (ALS) in Southern Germany—completeness of the ALS registry Swabia. PLoS ONE 9, e93932 (2014).

Gunnarsson, L.G., Dahlbom, K. & Strandman, E. Motor neuron disease and dementia reported among 13 members of a single family. Acta Neurol. Scand. 84, 429–433 (1991).

Pomerantz, J.L. & Baltimore, D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

Morton, S., Hesson, L., Peggie, M. & Cohen, P. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582, 997–1002 (2008).

Goncalves, A. et al. Functional dissection of the TBK1 molecular network. PLoS ONE 6, e23971 (2011).

Wong, Y.C. & Holzbaur, E.L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA 111, E4439–E4448 (2014).

Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580–592 (2013).

Fingert, J.H. et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 20, 2482–2494 (2011).

Cirulli, E.T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science published online, doi:10.1126/science.aaa3650 (15 February 2015).

Ikeda, F. et al. Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO J. 26, 3451–3462 (2007).

Hubers, A. et al. Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol Aging 35, 1–6 (2014).

van Blitterswijk, M. et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3776–3784 (2012).

Andersen, P.M. et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)—revised report of an EFNS task force. Eur. J. Neurol. 19, 360–375 (2012).

Erdmann, J. et al. Dysfunctional nitric oxide signaling increases risk of myocardial infarction. Nature 504, 432–436 (2013).

Andersen, P.M. et al. Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain 120, 1723–1737 (1997).

Akimoto, C. et al. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J. Med. Genet. 51, 419–424 (2014).

Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

Larabi, A. et al. Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Reports 3, 734–746 (2013).

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).