Hantavirus Brno loanvirus is highly specific to the common noctule bat (Nyctalus noctula) and widespread in Central Europe

Maysaa Dafalla1, Anna Orłowska2, Sinan Julian Keleş3, Petra Straková4, Kore Schlottau5, Kathrin Jeske1, Bernd Hoffmann5, Gudrun Wibbelt6, Marcin Smreczak2, Thomas Müller7, Conrad M. Freuling7, Xuejing Wang8, J. Rola2, Stephan Drewes1, Sasan Fereidouni3, Gerald Heckel8, Rainer G. Ulrich9
1Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
2Department of Virology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
3Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, 1160, Vienna, Austria
4Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
5Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
6Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
7Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
8Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
9German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493, Greifswald-Insel Riems, Germany

Tóm tắt

Abstract

Bat-associated hantaviruses have been detected in Asia, Africa and Europe. Recently, a novel hantavirus (Brno loanvirus, BRNV) was identified in common noctule bats (Nyctalus noctula) in the Czech Republic, but nothing is known about its geographical range and prevalence. The objective of this study was to evaluate the distribution and host specificity of BRNV by testing bats from neighbouring countries Germany, Austria and Poland. One thousand forty-seven bats representing 21 species from Germany, 464 bats representing 18 species from Austria and 77 bats representing 12 species from Poland were screened by L segment broad-spectrum nested reverse transcription-polymerase chain reaction (RT-PCR) or by BRNV-specific real-time RT-PCR. Three common noctules from Germany, one common noctule from Austria and three common noctules from Poland were positive in the hantavirus RNA screening. Conventional RT-PCR and primer walking resulted in the amplification of partial L segment and (almost) complete S and M segment coding sequences for samples from Germany and partial L segment sequences for samples from Poland. Phylogenetic analysis of these nucleotide sequences showed highest similarity to BRNV from Czech Republic. The exclusive detection of BRNV in common noctules from different countries suggests high host specificity. The RNA detection rate in common noctules ranged between 1 of 207 (0.5%; Austria), 3 of 245 (1.2%; Germany) and 3 of 20 (15%; Poland). In conclusion, this study demonstrates a broader distribution of BRNV in common noctules in Central Europe, but at low to moderate prevalence. Additional studies are needed to prove the zoonotic potential of this hantavirus and evaluate its transmission within bat populations.

Từ khóa


Tài liệu tham khảo

Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Davison AJ, Dempsey DM, Dutilh BE, Garcia ML, Harrach B, Harrison RL, Hendrickson RC, Junglen S, Knowles NJ, Krupovic M, Kuhn JH, Lambert AJ, Lobocka M, Nibert ML, Oksanen HM, Orton RJ, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Dooerslaer K, Vandamme AM, Varsani A, Zerbini FM (2021) Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch Virol 166:2633–2648. https://doi.org/10.1007/s00705-021-05156-1

Laenen L, Vergote V, Calisher CH, Klempa B, Klingstrom J, Kuhn JH, Maes P (2019) Hantaviridae: current classification and future perspectives. Viruses 11:788. https://doi.org/10.3390/v11090788

Schmaljohn CS, Dalrymple JM (1983) Analysis of Hantaan virus RNA: evidence for a new genus of Bunyaviridae. Virology 131:482–491. https://doi.org/10.1016/0042-6822(83)90514-7

Childs JE, Ksiazek TG, Spiropoulou CF, Krebs JW, Morzunov S, Maupin GO, Gage KL, Rollin PE, Sarisky J, Enscore RE, Frey JK, Peters CJ, Nichol ST (1994) Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the southwestern United States. J Infect Dis 169:1271–1280. https://doi.org/10.1093/infdis/169.6.1271

Plyusnin A, Morzunov SP (2001) Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol 256:47–75. https://doi.org/10.1007/978-3-642-56753-7_4

Plyusnin A, Vapalahti O, Vaheri A (1996) Hantaviruses: genome structure, expression and evolution. J Gen Virol 77(Pt 11):2677–2687. https://doi.org/10.1099/0022-1317-77-11-2677

Schatz J, Ohlendorf B, Busse P, Pelz G, Dolch D, Teubner J, Encarnação JA, Mühle RU, Fischer M, Hoffmann B, Kwasnitschka L, Balkema-Buschmann A, Mettenleiter TC, Müller T, Freuling CM (2014) Twenty years of active bat rabies surveillance in Germany: a detailed analysis and future perspectives. Epidemiol Infect 142:1155–1166. https://doi.org/10.1017/S0950268813002185

Schatz J, Fooks AR, McElhinney L, Horton D, Echevarria J, Vázquez-Moron S, Kooi EA, Rasmussen TB, Müller T, Freuling CM (2013) Bat rabies surveillance in Europe. Zoonoses Public Health 60:22–34. https://doi.org/10.1111/zph.12002

Saxenhofer M, Weber de Melo V, Ulrich RG, Heckel G (2017) Revised time scales of RNA virus evolution based on spatial information. Proc Biol Sci 284. https://doi.org/10.1098/rspb.2017.0857

Carey DE, Reuben R, Panicker KN, Shope RE, Myers RM (1971) Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian J Med Res 59:1758–1760

Gu SH, Dormion J, Hugot JP, Yanagihara R (2014) High prevalence of Nova hantavirus infection in the European mole (Talpa europaea) in France. Epidemiol Infect 142:1167–1171. https://doi.org/10.1017/S0950268813002197

Gu SH, Hejduk J, Markowski J, Kang HJ, Markowski M, Połatyńska M, Sikorska B, Liberski PP, Yanagihara R (2014) Co-circulation of soricid- and talpid-borne hantaviruses in Poland. Infect Genet Evol 28:296–303. https://doi.org/10.1016/j.meegid.2014.10.017

Gu SH, Kumar M, Sikorska B, Hejduk J, Markowski J, Markowski M, Liberski PP, Yanagihara R (2016) Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea). Sci Rep 6:21119. https://doi.org/10.1038/srep21119

Gu SH, Markowski J, Kang HJ, Hejduk J, Sikorska B, Liberski PP, Yanagihara R (2013) Boginia virus, a newfound hantavirus harbored by the Eurasian water shrew (Neomys fodiens) in Poland. Virol J 10:160. https://doi.org/10.1186/1743-422X-10-160

Kang HJ, Arai S, Hope AG, Song JW, Cook JA, Yanagihara R (2009) Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary. Virol J 6:208. https://doi.org/10.1186/1743-422X-6-208

Kang HJ, Bennett SN, Sumibcay L, Arai S, Hope AG, Mocz G, Song JW, Cook JA, Yanagihara R (2009) Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 4:e6149. https://doi.org/10.1371/journal.pone.0006149

Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Krüger DH (2006) Hantavirus in African wood mouse, Guinea. Emerg Infect Dis 12:838–840. https://doi.org/10.3201/eid1205.051487

Laenen L, Vergote V, Kafetzopoulou LE, Wawina TB, Vassou D, Cook JA, Hugot JP, Deboutte W, Kang HJ, Witkowski PT, Köppen-Rung P, Krüger DH, Ličková M, Stang A, Striešková L, Szemeš T, Markowski J, Hejduk J, Kafetzopoulos D, Van Ranst M, Yanagihara R, Klempa B, Maes P (2018) A novel hantavirus of the European Mole, Bruges virus, is involved in frequent Nova virus coinfections. Genome Biol Evol 10:45–55. https://doi.org/10.1093/gbe/evx268

Laenen L, Vergote V, Nauwelaers I, Verbeeck I, Kafetzopoulou LE, Van Ranst M, Maes P (2015) Complete Genome Sequence of Nova virus, a Hantavirus circulating in the European Mole in Belgium. Genome Announc 3:e00770–00715. https://doi.org/10.1128/genomeA.00770-15

Radosa L, Schlegel M, Gebauer P, Ansorge H, Heroldová M, Jánová E, Stanko M, Mošanský L, Fričová J, Pejčoch M, Suchomel J, Purchart L, Groschup MH, Krüger DH, Ulrich RG, Klempa B (2013) Detection of shrew-borne hantavirus in Eurasian pygmy shrew (Sorex minutus) in Central Europe. Infect Genet Evol 19:403–410. https://doi.org/10.1016/j.meegid.2013.04.008

Schlegel M, Radosa L, Rosenfeld UM, Schmidt S, Triebenbacher C, Löhr PW, Fuchs D, Heroldová M, Jánová E, Stanko M, Mošanský L, Fričová J, Pejčoch M, Suchomel J, Purchart L, Groschup MH, Krüger DH, Klempa B, Ulrich RG (2012) Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe. Virus Genes 45:48–55. https://doi.org/10.1007/s11262-012-0736-7

Song JW, Gu SH, Bennett SN, Arai S, Puorger M, Hilbe M, Yanagihara R (2007) Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virol J 4:114. https://doi.org/10.1186/1743-422X-4-114

Xu L, Wu J, He B, Qin S, Xia L, Qin M, Li N, Tu C (2015) Novel hantavirus identified in black-bearded tomb bats, China. Infect Genet Evol 31:158–160. https://doi.org/10.1016/j.meegid.2015.01.018

Weiss S, Witkowski PT, Auste B, Nowak K, Weber N, Fahr J, Mombouli JV, Wolfe ND, Drexler JF, Drosten C, Klempa B, Leendertz FH, Krüger DH (2012) Hantavirus in bat, Sierra Leone. Emerg Infect Dis 18:159–161. https://doi.org/10.3201/eid1801.111026

Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Song JW, Yanagihara R (2012) Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d'Ivoire. Virol J 9:34. https://doi.org/10.1186/1743-422X-9-34

Arai S, Nguyen ST, Boldgiv B, Fukui D, Araki K, Dang CN, Ohdachi SD, Nguyen NX, Pham TD, Boldbaatar B, Satoh H, Yoshikawa Y, Morikawa S, Tanaka-Taya K, Yanagihara R, Oishi K (2013) Novel bat-borne hantavirus, Vietnam. Emerg Infect Dis 19:1159–1161. https://doi.org/10.3201/eid1907.121549

Guo WP, Lin XD, Wang W, Tian JH, Cong ML, Zhang HL, Wang MR, Zhou RH, Wang JB, Li MH, Xu J, Holmes EC, Zhang YZ (2013) Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog 9:e1003159. https://doi.org/10.1371/journal.ppat.1003159

Tesikova J, Bryjova A, Bryja J, Lavrenchenko LA, Gouy de Bellocq J (2017) Hantavirus strains in East Africa related to western African hantaviruses. Vector Borne Zoonotic Dis 17:278–280. https://doi.org/10.1089/vbz.2016.2022

Arai S, Taniguchi S, Aoki K, Yoshikawa Y, Kyuwa S, Tanaka-Taya K, Masangkay JS, Omatsu T, Puentespina R Jr, Watanabe S, Alviola P, Alvarez J, Eres E, Cosico E, Quibod M, Morikawa S, Yanagihara R, Oishi K (2016) Molecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy's rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines. Infect Genet Evol 45:26–32. https://doi.org/10.1016/j.meegid.2016.08.008

Witkowski PT, Drexler JF, Kallies R, Ličková M, Bokorová S, Mananga GD, Szemes T, Leroy EM, Krüger DH, Drosten C, Klempa B (2016) Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses. Infect Genet Evol 41:113–119. https://doi.org/10.1016/j.meegid.2016.03.036

Straková P, Dufkova L, Širmarová J, Salát J, Bartonička T, Klempa B, Pfaff F, Höper D, Hoffmann B, Ulrich RG, Růžek D (2017) Novel hantavirus identified in European bat species Nyctalus noctula. Infect Genet Evol 48:127–130. https://doi.org/10.1016/j.meegid.2016.12.025

Schatz J, Freuling CM, Auer E, Goharriz H, Harbusch C, Johnson N, Kaipf I, Mettenleiter TC, Mühldorfer K, Mühle RU, Ohlendorf B, Pott-Dörfer B, Prüger J, Ali HS, Stiefel D, Teubner J, Ulrich RG, Wibbelt G, Müller T (2014) Enhanced passive bat rabies surveillance in indigenous bat species from Germany - a retrospective study. PLoS Negl Trop Dis 8:e2835. https://doi.org/10.1371/journal.pntd.0002835

Schlottau K, Eggerbauer E, Freuling CM, Beer M, Müller T, Hoffmann B (2020) Rapid molecular species identification of indigenous bats from Germany for surveillance purposes. Infect Genet Evol 78:104140. https://doi.org/10.1016/j.meegid.2019.104140

Löber C, Anheier B, Lindow S, Klenk HD, Feldmann H (2001) The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology 289:224–229. https://doi.org/10.1006/viro.2001.1171

Schmaljohn CS, Schmaljohn AL, Dalrymple JM (1987) Hantaan virus M RNA: coding strategy, nucleotide sequence, and gene order. Virology 157:31–39. https://doi.org/10.1016/0042-6822(87)90310-2

Csorba G, Smeenk C, Lee BP (2016) The identity of Vespertilio oreias Temminck, 1840-solving a taxonomic puzzle. Zootaxa 4205:564–570. https://doi.org/10.11646/zootaxa.4205.6.4

Voigt CC, Kingston T (2016) Bats in the Anthropocene. In: Voigt CC, and Kingston T (eds). Bats in the Anthropocene: conservation of bats in a changing world. Springer International Publishing AG, Switzerland, pp. 1–9. https://doi.org/10.1007/978-3-319-25220-9

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98.

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). IEEE, New Orleans, LA, USA, pp 1–8. https://doi.org/10.1109/GCE.2010.5676129