Hand gesture recognition based on convolution neural network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Meng, F., Ju, Z., Zhen, X., Li, J.: Real-time visual tracking based on improved perceptual hashing. Multimed. Tools Appl. 76(3), 4617–4634 (2017)
Tavakoli, M., Benussi, C., Lourenco, J.L.: Single channel surface emg control of advanced prosthetic hands: a simple, low cost and efficient approach. Expert Syst. Appl. 79, 322–332 (2017)
Branco, M.P., Freudenburg, Z.V., Aarnoutse, E.J., Bleichner, M.G., Vansteensel, M.J., Ramsey, N.F.: Decoding hand gestures from primary somatosensory cortex using high-density ecog. Neuroimage 147, 130–142 (2017)
He, Y., Li, G., Liao, Y., Sun, Y., Kong, J., Jiang, G., Jiang, D., Liu, H.: Gesture recognition based on an improved local sparse representation classification algorithm. Clust. Comput. 1, 1–12 (2017)
Miao, W., Li, G., Jiang, G., Fang, Y., Ju, Z., Liu, H.: Optimal grasp planning of multi-fingered robotic hands: a review. Appl. Comput. Math. 14(3), 238–247 (2015)
Hasan, H., Abdul-Kareem, S.: Retracted article: human-computer interaction using vision-based hand gesture recognition systems: a survey. Neural Comput. Appl. 25(2), 251–261 (2014)
Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)
Hasan, H.S., Kareem, S.A.: Human computer interaction for vision based hand gesture recognition: a survey. In: Advanced Computer Science Applications and Technologies (ACSAT), 2012 International Conferenve on (pp. 55–60) (2015)
Fang, Y., Liu, H., Li, G., Zhu, X.: A multichannel surface emg system for hand motion recognition. Int. J. Humanoid Robot. 12(2), 381–509 (2015)
Yin, Q., Li, G., Zhu, J.: Research on the method of step feature extraction for eod robot based on 2d laser radar. Discret. Contin. Dyn. Syst. 8(6), 1415–1421 (2015)
Chen, D., Li, G., Sun, Y., Jiang, G., Kong, J., Li, J., Liu, H.: Fusion hand gesture segmentation and extraction based on cmos sensor and 3d sensor. Int. J. Wirel. Mob. Comput. 12(3), 305–312 (2017)
Kim, D.H., Lee, J., Yoon, H.S., Kim, J., Sohn, J.: Vision-based arm gesture recognition for a long-range human-robot interaction. J. Supercomput. 65(1), 336–352 (2013)
Murthy, G.R.S., Jadon, R.S.: Hand gesture recognition using neural networks. Adv. Comput. Conf. 41, 134–138 (2010)
Chen, D.S., Li, G.F., Sun, Y., Kong, J.Y., Jiang, G.Z., Tang, H., Ju, Z.J., Yu, H., Liu, H.H.: An interactive image segmentation method in hand gesture recognition. Sensors 17(2), 1–7 (2017)
Li, J., Liu, X., Ouyang, G.: Using relevance feedback to distinguish the changes in EEG during different absence seizure phases. Clin. EEG Neurosci. 47(3), 211–219 (2016)
Mazumdar, M., Jeong, M.H., You, B.J.: An online optimal path decoder for HMM towards connected hand gesture recognition. IFAC Proc. Vol. 41(2), 736–741 (2008)
Li, B., Sun, Y., Li, G., Kong, J., Jiang, G., Jiang, D., Liu, H.: Gesture recognition based on modified adaptive orthogonal matching pursuit algorithm. Clust. Comput. 3, 1–10 (2017)
Li, Z., Li, G., Jiang, G., Fang, Y., Ju, Z., Liu, H.: Intelligent computation of grasping and manipulation for multi-fingered robotic hands. J. Comput. Theor. Nanosci. 12(12), 6192–6197 (2015)
Li, Z., Li, G., Kong, J., Sun, Y., Jiang, G., Liu, H.: Development of articulated robot trajectory planning. Int. J. Comput. Sci. Math. 8(1), 52–60 (2017)
Buades, A., Coll, B., Morel, J.M.: Image denoising methods. a new nonlocal principle. Siam Rev. 52(1), 113–147 (2010)
Ding, W., Li, G., Sun, Y., Kong, J., Jiang, G., Liu, H.: D-s evidential theory on semg signal recognition. Int. J. Comput. Sci. Math. 8(2), 138–145 (2017)
Pan, M.S., Tang, J.T.: An adaptive median filter algorithm based on B-spline function, vol. 8, pp. 92–99. Springer-Verlag, New York (2011)
Liu, W., Zhang, D., Cui, M., Ding, J.: An enhanced depth map based rendering method with directional depth filter and image inpainting. Visual Comput. 32(5), 579–589 (2016)
Miao, W., Li, G., Sun, Y., Jiang, G., Kong, J., Liu, H.: Gesture recognition based on sparse representation. Int. J. Wirel. Mob. Comput. 11(4), 348–356 (2016)
Stolarek, J.: Improving energy compaction of a wavelet transform using genetic algorithm and fast neural network. Arch. Control Sci. 20(4), 417–433 (2010)
Biradar, N., Dewal, M.L., Rohit, M.K., Jindal, I.: Echocardiographic image denoising using extreme total variation bilateral filter. Optik Int. J. Light Electron Opt. 127(1), 30–38 (2016)
Ju, Z., Ji, X., Li, J., Liu, H.: An integrative framework of human hand gesture segmentation for human-robot interaction. IEEE Syst. J. 11(3), 1326–1336 (2017)
Li, G., Kong, J., Jiang, G., Xie, L., Jiang, Z., Zhao, G.: Air-fuel ratio intelligent control in coke oven combustion process. Int. J. Infor. 15(11), 4487–4494 (2012)
Bapat, A., Ravi, A. and Raman, S.: An iterative, non-local approach for restoring depth maps in RGB-D images. In: Communications IEEE, pp. 1–6 (2015)
Ijjina, E.P., Chalavadi, K.M.: Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognit. 59(11), 199–212 (2016)
Chen, D., Li, G., Jiang, G., Fang, Y., Ju, Z., Liu, H.: Intelligent computational control of multi-fingered dexterous robotic hand. J. Comput. Theor. Nanosci. 12(12), 6126–6132 (2015)
Sanchez-Riera, J., Hua, K.L., Hsiao, Y.S., Lim, T., Hidayati, S.C., Cheng, W.H.: A comparative study of data fusion for RGB-D based visual recognition. Pattern Recognit. Lett. 73, 1–6 (2016)
Mahmoudi, M., Sapiro, G.: Sparse representations for range data restoration. IEEE Trans. Image Process. 21(5), 2909–2915 (2012)
Nebti, S., Boukerram, A.: Handwritten characters recognition based on nature-inspired computing and neuro-evolution. Appl. Intell. 38(2), 146–159 (2013)
Li, G., Miao, W., Jiang, G., Fang, Y., Ju, Z., Liu, H.: Intelligent control model and its simulation of flue temperature in coke oven. Discret. Contin. Dyn. Syst. Ser. S 8(6), 1223–1237 (2017)
Ding, W., Li, G., Jiang, G., Fang, Y., Ju, Z., Liu, H.: Intelligent computation in grasping control of dexterous robot hand. J. Comput. Theor. Nanosci. 12(12), 6096–6099 (2015)
Li, G., Liu, J., Jiang, G., Liu, H.: Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv. Mech. Eng. 7(4), 1–13 (2015)
Li, G., Gu, Y., Kong, J., Jiang, G., Xie, L., Wu, Z., Li, Z., He, Y., Gao, P.: Intelligent control of air compressor production process. Appl. Math. Inf. Sci. 7(3), 1051–1058 (2013)
Li, G., Qu, P., Kong, J., Jiang, G., Xie, L., Gao, P., Wu, Z., He, Y.: Coke oven intelligent integrated control system. Appl. Math. Inf. Sci. 7(3), 1043–1050 (2013)
Li, G., Qu, P., Kong, J., Jiang, G., Xie, L., Wu, Z., Gao, P., He, H.: Influence of working lining parameters on temperature and stress field of ladle. Appl. Math. Inf. Sci. 7(2), 439–448 (2013)
Liao, Y., Sun, Y., Li, G., Kong, J., Jiang, G., Jiang, D., Cai, H., Ju, Z.J., Yu, H., Liu, H.H.: Simultaneous calibration: a joint optimization approach for multiple kinect and external cameras. Sensors 17(7), 1–16 (2017)