Hand-arm autonomous grasping: synergistic motions to enhance the learning process

Fanny Ficuciello1
1Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Naples, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ficuciello F, Siciliano B (2016) Learning in robotic manipulation: the role of dimensionality reduction in policy search methods. Comment on Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands by Marco Santello, Matteo Bianchi, Marco Gabiccini, Emiliano Ricciardi, Gionata Salvietti et al. Physics of Life Reviews

Ficuciello F (2018) Synergy-based Control of Underactuated Anthropomorphic Hands. IEEE Trans Ind Inform (in press)

Suarez R, Rosell J, Garcia N (2015) Using synergies in dual-arm manipulation tasks. In: Proceedings of the 2000 IEEE international conference on robotics and automation

Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. In: Siciliano B, Khatib O (eds) Springer handbook of robotic. Springer, Berlin

Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

Kormushev P, Calinon S, Caldwell D (2007) Reinforcement learning in robotics: applications and real-world challenges. Robotics 2:122–148

Romero J, Feix T, Ek C, Kjellstrom H, Kragic D (2013) A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans Robot 29:1342–1352

Theodorou E, Buchli J, Schaal S (2010) Learning policy improvements with path integrals. J Mach Learn Res 9:828–835

Stulp F, Theodorou A, Schaal S (2012) Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Trans Robot 28(6):1360–1370

Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano J, Larranaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Springer, Berlin, pp 75–102

Stulp F, Sigaud O (2012) Path integral policy improvement with covariance matrix adaptation, In: Proceedings of the 29th international conference on machine learning, Edinburgh, Scotland, pp 2112–2118

Theodorou E, Buchli J, Schaal F (2010) A generalized path integral control approach to reinforcement learning. J Mach Learn Res 11:3137–3181

Kormushev P, Calinon S, Caldwell D (2010) Robot motor skill coordination with EM-based reinforcement learning, In: Proceedings IEEE/RSJ international conference on intelligent robotics systems, Taipei, Taiwan, pp 3232–3237

Rombokas E, Malhotra M, Theodorou E, Todorov E, Matsuoka Y (2012) Reinforcement learning and synergistic control of the act hand. IEEE/ASME Trans Mechatron 18(2):569–577

Santello M, Flanders M, Soechting J (1998) Postural hand synergies for tool use. J Neurosci 18(23):10105–10115

Bicchi A (1994) On the closure properties of robotic grasping. Int j Robot Res 14(4):319–334

SCHUNK Hand webpage. http://mobile.schunk-microsite.com/en/produkte/produkte/servoelektrische-5-finger-greifhand-svh.html

Ficuciello F, Zaccara D, Siciliano B (2016) Synergy-based policy improvement with path integrals for anthropomorphic hands. In: IEEE/RSJ international conference on intelligent robots and systems, Daejeon, Korea, 9–14 September

Ficuciello F, Palli G, Melchiorri C, Siciliano B (2014) Postural synergies of the ub hand iv for human-like grasping. Robot Auton Syst 62:357–362

Palli G, Melchiorri C, Vassura G, Scarcia U, Moriello L, Berselli G, Cavallo A, Maria GD, Natale C, Pirozzi S, May C, Ficuciello F, Siciliano B (2014) The dexmart hand: mechatronic design and experimental evaluation of synergy-based control for human-like grasping. Int J Robot Res 33:799–824

Jarrasse N, Ribeiro AT, Sahbani A, Bachta W, Roby-Brami A (2014) Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects. J Neuroeng Rehabil 11:113

Ficuciello F, Zaccara D, Siciliano B (2016) Learning grasps in a synergy-based framework. In: 15th International symposium on experimental robotics, Tokyo, Japan, 3–6 October

schunk\_svh\_driver. http://wiki.ros.org/schunk_svh_driver

Deisenroth M, Rasmussen CE (2011) Pilco: a model-based and dataefficient approach to policy search. In: Proceedings of the 28th international conference on machine learning, pp 465472

Saveriano M, Yin Y, Falco P, Lee D (2017) Data-efficient control policy search using residual dynamics learning. In: IEEE/RSJ international conference on intelligent robots and systems, Vancouver, BC, 2017, pp. 4709–4715