Hamiltonian approach to modelling interfacial internal waves over variable bottom

Physica D: Nonlinear Phenomena - Tập 433 - Trang 133190 - 2022
Rossen I. Ivanov1, Calin I. Martin2, Michail D. Todorov3
1School of Mathematical Sciences, Technological University Dublin, City Campus, Grangegorman Lower, Dublin, D07 ADY7, Ireland
2Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
3Department of Differential Equations, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 Kliment Ohridski Boulevard, 1000 Sofia, Bulgaria

Tài liệu tham khảo

Kirby, 1997, Nonlinear dispersive long waves in water of variable depth, vol. 10, 55 Dingemans, 1997, vol. 13 Johnson, 1973, On the development of a solitary wave moving over an uneven bottom, Proc. Cambr. Philos. Soc., 73, 183, 10.1017/S0305004100047605 Djordjević, 1978, On the development of packets of surface gravity waves moving over an uneven bottom, J. Appl. Math. Phys. (ZAMP), 29, 950, 10.1007/BF01590816 Rosales, 1982, Gravity waves in a channel with a rough bottom, Stud. Appl. Math., 68, 89, 10.1002/sapm198368289 Camassa, 1996, Long-time effects of bottom topography in shallow water, Physica D, 98, 258, 10.1016/0167-2789(96)00117-0 Nachbin, 2003, A terrain-following Boussinesq system, SIAM J. Appl. Math., 63, 905, 10.1137/S0036139901397583 Luz, 2013, Wave packet defocusing due to a highly disordered bathymetry, Stud. Appl. Math., 130, 393, 10.1111/j.1467-9590.2012.00571.x Craig, 2012, The surface signature of internal waves, J. Fluid Mech., 710, 277, 10.1017/jfm.2012.364 J.T. Kirby, R.A. Dalrymple, Propagation of weakly nonlinear surface waves in the presence of varying depth and current, in: Proceedings of the 20th Congress, Int. Assoc. Hydraul. Res.(IAHR), Moscow, 1983, Paper S.1.5.3, pp. 198–202. Dutykh, 2009, Energy of tsunami waves generated by bottom motion, Proc. R. Soc. A, 465, 725, 10.1098/rspa.2008.0332 Choi, 1996, Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech., 313, 83, 10.1017/S0022112096002133 Choi, 1999, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396, 1, 10.1017/S0022112099005820 Choi, 1996, Long internal waves of finite amplitude, Phys. Rev. Lett., 77, 1759, 10.1103/PhysRevLett.77.1759 Maderich, 2009, The transformation of an interfacial solitary wave of elevation at a bottom step, Nonlinear Processes Geophys., 16, 33, 10.5194/npg-16-33-2009 Grimshaw, 1999, Hamiltonian formulation for solitary waves propagating on a variable background, J. Eng. Math., 36, 89, 10.1023/A:1004541906496 Grimshaw, 2010, Internal solitary waves: propagation, deformation and disintegration, Nonlinear Processes Geophys., 17, 633, 10.5194/npg-17-633-2010 Helfrich, 1986, On long nonlinear internal waves over slope-shelf topography, J. Fluid Mech., 167, 285, 10.1017/S0022112086002823 Djordjević, 1978, The fission and the disintegration of internal solitary waves moving over two-dimensional topography, J. Phys. Oceanogr., 8, 1016, 10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO;2 Wang, 2001, Long internal waves in shear flows: topographic resonance and wave-induced global instability, Dyn. Atmos. Oceans, 33, 263, 10.1016/S0377-0265(00)00061-0 Compelli, 2019, Surface waves over currents and uneven bottom, Deep-Sea Res. II, 160, 25, 10.1016/j.dsr2.2018.11.004 Compelli, 2015, On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlinear Math. Phys., 22, 531, 10.1080/14029251.2015.1113052 Constantin, 2015, The dynamics of waves interacting with the equatorial undercurrent, Geophys. Astrophys. Fluid Dyn., 109, 311, 10.1080/03091929.2015.1066785 Constantin, 2019, Equatorial wave-current interactions, Comm. Math. Phys., 370, 1, 10.1007/s00220-019-03483-8 Constantin, 2016, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221, 1417, 10.1007/s00205-016-0990-2 Ivanov, 2017, Hamiltonian model for coupled surface and internal waves in the presence of currents, Nonlinear Anal. RWA, 34, 316, 10.1016/j.nonrwa.2016.09.010 Cullen, 2020, On the intermediate long wave propagation for internal waves in the presence of currents, Eur. J. Mech. B/Fluids, 84, 325, 10.1016/j.euromechflu.2020.07.001 Zakharov, 1968, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 86 Benjamin, 1997, Reappraisal of the Kelvin–Helmholtz problem, part 1. Hamiltonian structure, J. Fluid Mech., 333, 301, 10.1017/S0022112096004272 Benjamin, 1997, Reappraisal of the Kelvin–Helmholtz problem, part 2. Interaction of the Kelvin –Helmholtz, superharmonic and Benjamin–Feir instabilities, J. Fluid Mech., 333, 327, 10.1017/S0022112096004284 Benjamin, 1982, Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., 125, 137, 10.1017/S0022112082003292 Craig, 2005, Hamiltonian long wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58, 1587, 10.1002/cpa.20098 Craig, 2005, Hamiltonian long-wave expansions for water waves over a rough bottom, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 839 Compelli, 2018, Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom, Phil. Trans. R. Soc. A, 376, 10.1098/rsta.2017.0091 Craig, 2000, Normal forms for waves in fluid interfaces, Wave Motion, 31, 21, 10.1016/S0165-2125(99)00022-0 Guyenne, 2017, A high-order spectral method for nonlinear water waves in the presence of a linear shear current, Comput. Fluids, 154, 224, 10.1016/j.compfluid.2017.06.004 Compelli, 2017, The dynamics of flat surface internal geophysical waves with currents, J. Math. Fluid Mech., 19, 329, 10.1007/s00021-016-0283-4 Compelli, 2015, Hamiltonian formulation of 2 bounded immiscible media with constant non-zero vorticities and a common interface, Wave Motion, 54, 115, 10.1016/j.wavemoti.2014.11.015 Compelli, 2016, Hamiltonian approach to the modeling of internal geophysical waves with vorticity, Monatsh. Math., 179, 509, 10.1007/s00605-014-0724-1 Constantin, 2007, Nearly-Hamiltonian structure for water waves with constant vorticity, J. Math. Fluid Mech., 9, 1 Wahlén, 2007, A Hamiltonian formulation of water waves with constant vorticity, Lett. Math. Phys., 79, 303, 10.1007/s11005-007-0143-5 Johnson, 1997 Korteweg, 1895, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave, Phil. Mag., 39, 422, 10.1080/14786449508620739 Novikov, 1984 Vaneeva, 2012, Group classification of variable coefficient KdV-like equations, vol 36 Flügge, 1998 Dilek, 1998, Structure and tectonics of intermediate-spread oceanic crust drilled at DSDP/ODP holes 504b and 896a, Costa Rica Rift, vol. 131, 194 Vlasenko, 2002, Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography, J. Phys. Oceanogr., 32, 1779, 10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2 Christov, 1994, Inelasticity of soliton collisions in system of coupled NLS equations, Phys. Scr., 50, 449, 10.1088/0031-8949/50/5/001 Christov, 1994 Christov, 2013, Investigation of the long-time evolution of localized solutions of a dispersive wave system, Discrete Contin. Dyn. Syst., Supplement, 139 Todorov, 2016, On a method for solving of multidimensional equations of mathematical physics, vol. 83, 3p