Hamilton–Jacobi semigroup on length spaces and applications

Journal de Mathématiques Pures et Appliquées - Tập 88 Số 3 - Trang 219-229 - 2007
John Lott1, Cédric Villani2
1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA
2UMPA, ENS Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ané, 2000, Sur les inégalités de Sobolev logarithmiques, vol. 10

Bobkov, 2001, Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl., 80, 669, 10.1016/S0021-7824(01)01208-9

Bobkov, 1999, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163, 1, 10.1006/jfan.1998.3326

Burago, 2001, A Course in Metric Geometry, vol. 33

Cannarsa, 2004, Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, vol. 58

Cheeger, 1999, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428, 10.1007/s000390050094

Kuwai, 2001, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z., 238, 269, 10.1007/s002090100252

Ledoux, 1999, Concentration of measure and logarithmic Sobolev inequalities, vol. 1709, 120

Ledoux, 2001

Lott

Lott

Otto, 2000, Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361, 10.1006/jfan.1999.3557

G. Perelman, A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, unpublished preprint

von Renesse

Sturm, 2006, On the geometry of metric measure spaces I, Acta Math., 196, 65, 10.1007/s11511-006-0002-8

Sturm, 2006, On the geometry of metric measure spaces II, Acta Math., 196, 133, 10.1007/s11511-006-0003-7

Villani, 2003, Topics in Optimal Transportation, vol. 58

C. Villani, Optimal transport, old and new, in preparation