Hamel’s Formalism for Infinite-Dimensional Mechanical Systems

Journal of Nonlinear Science - Tập 27 - Trang 241-283 - 2016
Donghua Shi1, Yakov Berchenko-Kogan2, Dmitry V. Zenkov3, Anthony M. Bloch4
1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA
3Department of Mathematics, North Carolina State University, Raleigh, USA
4Department of Mathematics, University of Michigan, Ann Arbor, USA

Tóm tắt

In this paper, we introduce Hamel’s formalism for infinite-dimensional mechanical systems and in particular consider its applications to the dynamics of nonholonomically constrained systems. This development is a nontrivial extension of its finite-dimensional counterpart. The analysis is applied to several continuum mechanical systems of interest, including coupled systems and systems with infinitely many constraints.

Tài liệu tham khảo

Arnold, V.I.: Sur la géometrie differentialle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. Inst. Fourier 16, 319–361 (1966) Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006) Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. IFAC Proc. 45, 178–183 (2012) Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015) Binz, E., de León, M., Martín de Diego, D., Socolescu, D.: Nonholonomic constraints in classical field theories. Rep. Math. Phys. 49, 151–166 (2002) Bloch, A.M.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24, 2nd edn. Springer, New York (2015) Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996a) Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996b) Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009) Cendra, H., Holm, D.D., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction, the Euler–Poincare equations, and semidirect products. Am. Math. Soc. Transl. 186, 1–25 (1988) Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, lagrangian reduction, and nonholonomic systems. In: Enguist, B., Schmid, W. (eds.) Mathematics Unlimited-2001 and Beyond, pp. 221–273. Springer, New York (2001) Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian Reduction by Stages, Memoirs of the American Mathematical Socity, vol. 152. AMS, Providence (2001b) Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989) Domański, P., Mastyło, M.: Characterization of splitting for Fréchet–Hilbert spaces via interpolation. Mathematische Annalen 338, 317–340 (2007) Ebin, D.G.: Groups of diffeomorphisms and fluid motion: reprise. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015) Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970) Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch Ration Mech Anal 197, 811–902 (2010) Euler, L.: Decouverte d’un nouveau principe de mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752) Euler, L.: Principes généraux de l’état d’équilibre des fluides. Mémoires de l’académie des sciences de Berlin 11, 217–273 (1757a) Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1757b) Euler, L.: Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae 6, 271–311 (1761) Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003) Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22, 463–497 (2012) Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic rods in perfect friction contact. Phys. Rev. Lett. 109, 244303 (2012) Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic strands with rolling contact. Phys. D 294, 6–23 (2015) Gay-Balmaz, F., Yoshimura, H.: Dirac reduction for nonholonomic mechanical systems and semidirect products. Adv. Appl. Mech. 63, 131–213 (2015) Hamel, G.: Die Lagrange–Eulersche gleichungen der mechanik. Z. Math. Phys. 50, 1–57 (1904) Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834) Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835) Hiltunen, S.: A Frobenius theorem for locally convex global analysis. Monatshefte für Mathematik 129, 109–117 (2000) Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998) Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) Khesin, B., Lee, P.: A nonholonomic Moser theorem and optimal transport. J. Symplectic Geom. 7, 381–414 (2009) Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53. AMS, Providence (1997) Krishnaprasad, P.S., Tsakiris, D.P.: \(G\)-Snakes: Nonholonomic Kinematic Chains on Lie Groups. ISR Technical Report (1994) Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint, Paris (1788) Marsden, J.E.: Lectures on Mechanics, London Mathematical Society Lecture Note Series 174. Cambridge University Press, Cambridge (1992) Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Upper Saddle River (1983) Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999) Neimark, JuI, Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972) Omori, H.: Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, vol. 158. AMS, Providence (1997) Ostrowski, J., Lewis, A., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2391–2397. (1994) Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. CR Acad. Sci. 132, 369–371 (1901) Poincaré, H.: Sur la precession des corps deformables. Bull. Astron. 27, 321–356 (1910) Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946) Teichmann, J.: A Frobenius Theorem on convenient manifolds. Monatshefte für Mathematik 134, 159–167 (2001) Vankerschaver, J.: The momentum map for nonholonomic field theories with symmetry. Int. J. Geom. Meth. Mod. Phys. 2, 1029–1041 (2005) Vankerschaver, J.: A class of nonholonomic kinematic constraints in elasticity. J. Phys. A: Math. Theor. 40, 3889–3913 (2007a) Vankerschaver, J.: (2007b), Continuous and Discrete Aspects of Lagrangian Field Theories with Nonholonomic Constraints. Ph.D. Thesis, Ghent University Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Implicit lagrangian systems. J. Geom. Phys. 57, 133–156 (2006a) Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Variational structures. J. Geom. Phys. 57, 209–250 (2006b) Yoshimura, H., Marsden, J.E.: Reduction of dirac structures and the Hamilton–Pontryagin principle. Rep. Math. Phys. 60, 381–426 (2007) Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s Formalism and Variational Integrators on a Sphere. Proc. CDC 51, 7504–7510 (2012)