Hamel’s Formalism for Infinite-Dimensional Mechanical Systems
Tóm tắt
In this paper, we introduce Hamel’s formalism for infinite-dimensional mechanical systems and in particular consider its applications to the dynamics of nonholonomically constrained systems. This development is a nontrivial extension of its finite-dimensional counterpart. The analysis is applied to several continuum mechanical systems of interest, including coupled systems and systems with infinitely many constraints.
Tài liệu tham khảo
Arnold, V.I.: Sur la géometrie differentialle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. Inst. Fourier 16, 319–361 (1966)
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)
Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. IFAC Proc. 45, 178–183 (2012)
Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015)
Binz, E., de León, M., Martín de Diego, D., Socolescu, D.: Nonholonomic constraints in classical field theories. Rep. Math. Phys. 49, 151–166 (2002)
Bloch, A.M.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24, 2nd edn. Springer, New York (2015)
Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996a)
Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996b)
Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009)
Cendra, H., Holm, D.D., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction, the Euler–Poincare equations, and semidirect products. Am. Math. Soc. Transl. 186, 1–25 (1988)
Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, lagrangian reduction, and nonholonomic systems. In: Enguist, B., Schmid, W. (eds.) Mathematics Unlimited-2001 and Beyond, pp. 221–273. Springer, New York (2001)
Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian Reduction by Stages, Memoirs of the American Mathematical Socity, vol. 152. AMS, Providence (2001b)
Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)
Domański, P., Mastyło, M.: Characterization of splitting for Fréchet–Hilbert spaces via interpolation. Mathematische Annalen 338, 317–340 (2007)
Ebin, D.G.: Groups of diffeomorphisms and fluid motion: reprise. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: the Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477–506. Springer, Berlin (2015)
Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)
Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch Ration Mech Anal 197, 811–902 (2010)
Euler, L.: Decouverte d’un nouveau principe de mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752)
Euler, L.: Principes généraux de l’état d’équilibre des fluides. Mémoires de l’académie des sciences de Berlin 11, 217–273 (1757a)
Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1757b)
Euler, L.: Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae 6, 271–311 (1761)
Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003)
Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22, 463–497 (2012)
Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic rods in perfect friction contact. Phys. Rev. Lett. 109, 244303 (2012)
Gay-Balmaz, F., Putkaradze, V.: Dynamics of elastic strands with rolling contact. Phys. D 294, 6–23 (2015)
Gay-Balmaz, F., Yoshimura, H.: Dirac reduction for nonholonomic mechanical systems and semidirect products. Adv. Appl. Mech. 63, 131–213 (2015)
Hamel, G.: Die Lagrange–Eulersche gleichungen der mechanik. Z. Math. Phys. 50, 1–57 (1904)
Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)
Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)
Hiltunen, S.: A Frobenius theorem for locally convex global analysis. Monatshefte für Mathematik 129, 109–117 (2000)
Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)
Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Khesin, B., Lee, P.: A nonholonomic Moser theorem and optimal transport. J. Symplectic Geom. 7, 381–414 (2009)
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53. AMS, Providence (1997)
Krishnaprasad, P.S., Tsakiris, D.P.: \(G\)-Snakes: Nonholonomic Kinematic Chains on Lie Groups. ISR Technical Report (1994)
Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint, Paris (1788)
Marsden, J.E.: Lectures on Mechanics, London Mathematical Society Lecture Note Series 174. Cambridge University Press, Cambridge (1992)
Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Upper Saddle River (1983)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)
Neimark, JuI, Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)
Omori, H.: Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, vol. 158. AMS, Providence (1997)
Ostrowski, J., Lewis, A., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2391–2397. (1994)
Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. CR Acad. Sci. 132, 369–371 (1901)
Poincaré, H.: Sur la precession des corps deformables. Bull. Astron. 27, 321–356 (1910)
Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946)
Teichmann, J.: A Frobenius Theorem on convenient manifolds. Monatshefte für Mathematik 134, 159–167 (2001)
Vankerschaver, J.: The momentum map for nonholonomic field theories with symmetry. Int. J. Geom. Meth. Mod. Phys. 2, 1029–1041 (2005)
Vankerschaver, J.: A class of nonholonomic kinematic constraints in elasticity. J. Phys. A: Math. Theor. 40, 3889–3913 (2007a)
Vankerschaver, J.: (2007b), Continuous and Discrete Aspects of Lagrangian Field Theories with Nonholonomic Constraints. Ph.D. Thesis, Ghent University
Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Implicit lagrangian systems. J. Geom. Phys. 57, 133–156 (2006a)
Yoshimura, H., Marsden, J.E.: Dirac structures in lagrangian mechanics. Variational structures. J. Geom. Phys. 57, 209–250 (2006b)
Yoshimura, H., Marsden, J.E.: Reduction of dirac structures and the Hamilton–Pontryagin principle. Rep. Math. Phys. 60, 381–426 (2007)
Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s Formalism and Variational Integrators on a Sphere. Proc. CDC 51, 7504–7510 (2012)