Halloysite nanotubes: a green resource for materials and life sciences
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdullayev E, Lvov Y (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903. https://doi.org/10.1039/c3tb20059k
Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interf 5:4464–4471. https://doi.org/10.1021/am400936m
Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36. https://doi.org/10.1016/j.clay.2006.06.015
Aguzzi C, Viseras C, Cerezo P, Salcedo I, Sánchez-Espejo R, Valenzuela C (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surf B Biointerfaces 105:75–80. https://doi.org/10.1016/j.colsurfb.2012.12.041
Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S (2014) Selective Functionalization of Halloysite cavity by click reaction: structured filler for enhancing mechanical properties of Bionanocomposite films. J Phys Chem C 118:15095–15101. https://doi.org/10.1021/jp504388e
Bellani L, Giorgetti L, Riela S, Lazzara G, Scialabba A, Massaro M (2016) Ecotoxicity of halloysite nanotube-supported palladium nanoparticles in Raphanus sativus L. Environ Toxicol Chem 35:2503–2510. https://doi.org/10.1002/etc.3412
Biddeci G et al (2016) Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym 152:548–557. https://doi.org/10.1016/j.carbpol.2016.07.041
Bretti C, Cataldo S, Gianguzza A, Lando G, Lazzara G, Pettignano A, Sammartano S (2016) Thermodynamics of proton binding of halloysite nanotubes. J Phys Chem C 120:7849–7859. https://doi.org/10.1021/acs.jpcc.6b01127
Carazo E et al (2017) Assessment of halloysite nanotubes as vehicles of isoniazid. Colloids Surf B Biointerfaces 160:337–344. https://doi.org/10.1016/j.colsurfb.2017.09.036
Cataldo S, Lazzara G, Massaro M, Muratore N, Pettignano A, Riela S (2018) Functionalized halloysite nanotubes for enhanced removal of lead(II) ions from aqueous solutions. Appl Clay Sci 156:87–95. https://doi.org/10.1016/j.clay.2018.01.028
Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S (2015) Biocompatible poly(N -isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C 119:8944–8951. https://doi.org/10.1021/acs.jpcc.5b00991
Duce C, Della Porta V, Bramanti E, Campanella B, Spepi A, Tinè MR (2017) Loading of halloysite nanotubes with BSA, α -Lac and β -Lg: a Fourier transform infrared spectroscopic and thermogravimetric study. Nanotechnology 28:055706
Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59. https://doi.org/10.1039/C4EN00135D
Fizir M, Dramou P, Zhang K, Sun C, Pham-Huy C, He H (2017) Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci 505:476–488. https://doi.org/10.1016/j.jcis.2017.04.011
Ghezzi L, Spepi A, Agnolucci M, Cristani C, Giovannetti M, Tiné MR, Duce C (2017) Kinetics of release and antibacterial activity of salicylic acid loaded into halloysite nanotubes. Appl Clay Sci. https://doi.org/10.1016/j.clay.2017.11.041
Kurczewska J, Pecyna P, Ratajczak M, Gajęcka M, Schroeder G (2017) Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm J 25:911–920. https://doi.org/10.1016/j.jsps.2017.02.007
Lazzara G, Massaro M, Milioto S, Riela S (2017a) Halloysite-based bionanocomposites. Handb Compos Renew Maters 1–8:557–584. https://doi.org/10.1002/9781119441632.ch143
Lazzara G, Riela S, Fakhrullin RF (2017b) Clay-based drug-delivery systems: what does the future hold? Therap Deliv 8:633–646. https://doi.org/10.4155/tde-2017-0041
Lazzara G, Massaro M, Riela S (2018) Current status of nanoclay phytotoxicity. Phytotoxicity of nanoparticles. Springer, Cham, pp 151–174. https://doi.org/10.1007/978-3-319-76708-6_6
Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
Massaro M, Riela S (2018) Organo-clay nanomaterials based on halloysite and cyclodextrin as carriers for polyphenolic compounds. J Funct Biomater. https://doi.org/10.3390/jfb9040061
Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014a) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415. https://doi.org/10.1016/j.jorganchem.2013.10.044
Massaro M, Riela S, Lazzara G, Gruttadauria M, Milioto S, Noto R (2014b) Green conditions for the Suzuki reaction using microwave irradiation and a new HNT-supported ionic liquid-like phase (HNT-SILLP) catalyst. Appl Organomet Chem 28:234–238. https://doi.org/10.1002/aoc.3114
Massaro M, Riela S, Lo Meo P, Noto R, Cavallaro G, Milioto S, Lazzara G (2014c) Functionalized halloysite multivalent glycocluster as a new drug delivery system. J Mater Chem B 2:7732–7738. https://doi.org/10.1039/c4tb01272k
Massaro M et al (2015a) Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. Int J Pharm 478:476–485. https://doi.org/10.1016/j.ijpharm.2014.12.004
Massaro M et al (2015b) Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B 3:4074–4081. https://doi.org/10.1039/C5TB00564G
Massaro M et al (2015c) Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation. J Mol Catal A Chem 408:12–19. https://doi.org/10.1016/j.molcata.2015.07.008
Massaro M et al (2016a) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces 140:505–513. https://doi.org/10.1016/j.colsurfb.2016.01.025
Massaro M et al (2016b) Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Adv 6:87935–87944. https://doi.org/10.1039/c6ra14657k
Massaro M, Riela S, Cavallaro G, Colletti CG, Milioto S, Noto R, Lazzara G (2016c) Ecocompatible halloysite/cucurbit[8]uril hybrid as efficient nanosponge for pollutants removal chemistry. Select 1:1773–1779. https://doi.org/10.1002/slct.201600322
Massaro M et al (2016d) A synergic nanoantioxidant based on covalently modified halloysite-trolox nanotubes with intra-lumen loaded quercetin. J Mater Chem B 4:2229–2241. https://doi.org/10.1039/c6tb00126b
Massaro M et al (2016e) Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts. RSC Adv 6:55312–55318. https://doi.org/10.1039/c6ra06337c
Massaro M, Colletti CG, Lazzara G, Guernelli S, Noto R, Riela S (2017) Synthesis and characterization of halloysite-cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5:3346–3352. https://doi.org/10.1021/acssuschemeng.6b03191
Massaro M, Campofelice A, Colletti CG, Lazzara G, Noto R, Riela S (2018a) Functionalized halloysite nanotubes: efficient carrier systems for antifungine drugs. Appl Clay Sci 160:186–192. https://doi.org/10.1016/j.clay.2018.01.005
Massaro M et al (2018b) Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. J Colloid Interface Sci 524:156–164. https://doi.org/10.1016/j.jcis.2018.04.025
Massaro M, Cavallaro G, Colletti CG, Lazzara G, Milioto S, Noto R, Riela S (2018c) Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B 6:3415–3433. https://doi.org/10.1039/c8tb00543e
Massaro M et al (2018d) Palladium nanoparticles immobilized on halloysite nanotubes covered by a multilayer network for catalytic applications. New J Chem 42:13938–13947. https://doi.org/10.1039/c8nj02932f
Massaro M et al (2018e) Photoluminescent hybrid nanomaterials from modified halloysite nanotubes. J Mater Chem C 6:7377–7384. https://doi.org/10.1039/c8tc01424h
Massaro M et al (2019a) Effect of halloysite nanotubes filler on polydopamine properties. J Colloid Interface Sci 555:394–402. https://doi.org/10.1016/j.jcis.2019.07.100
Massaro M et al (2019b) Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.05.062
Massaro M et al (2019c) Multifunctional carrier based on halloysite/laponite hybrid hydrogel for kartogenin delivery. ACS Med Chem Lett 10:419–424. https://doi.org/10.1021/acsmedchemlett.8b00465
Massaro M et al (2019d) Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications. Appl Organomet Chem. https://doi.org/10.1002/aoc.4665
Massaro M et al (2020) Chemical and biological evaluation of cross-linked halloysite-curcumin derivatives. Appl Clay Sci 184:105400. https://doi.org/10.1016/j.clay.2019.105400
Palantöken S, Tekay E, Şen S, Nugay T, Nugay N (2015) A novel nonchemical approach to the expansion of halloysite nanotubes and their uses in chitosan composite hydrogels for broad-spectrum dye adsorption capacity. Polym Compos 37:2770–2781. https://doi.org/10.1002/pc.23473
Pasbakhsh P, Churchman GJ (2015) Natural mineral nanotubes: properties and applications. Apple Academic Press Inc, Burlington
Price R, Gaber BP, Lvov Y, Price R (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dinucleotide from halloysite; a cylindrical mineral. J Microencaps 18:713–722. https://doi.org/10.1080/02652040010019532
Riela S et al (2014) Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharm 475:613–623. https://doi.org/10.1016/j.ijpharm.2014.09.019
Rizzo C et al (2017) Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin. J Mater Chem B 5:3217–3229. https://doi.org/10.1039/C7TB00297A
Sun X, Zhang Y, Shen H, Jia N (2010) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta 56:700–705. https://doi.org/10.1016/j.electacta.2010.09.095
Tan D, Yuan P, Annabi-Bergaya F, Liu D, Wang L, Liu H, He H (2014) Loading and in vitro release of ibuprofen in tubular halloysite. Appl Clay Sci 96:50–55. https://doi.org/10.1016/j.clay.2014.01.018
Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11:820–826. https://doi.org/10.1021/bm9014446
Wang X, Gong J, Gui Z, Hu T, Xu X (2018) Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration. Environ Toxicol. https://doi.org/10.1002/tox.22543
Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9:1600–1612. https://doi.org/10.1021/nn506255e