Halfspace type theorems for self-shrinkers in arbitrary codimension

Collectanea Mathematica - Trang 1-11 - 2023
Hieu T. Doan1, Duyen T. M. Nguyen1
1Department of Mathematics, College of Education, Hue University, Hue, Vietnam

Tóm tắt

In this paper, we generalize some halfspace type theorems for self-shrinkers of codimension 1 to the case of arbitrary codimension.

Tài liệu tham khảo

Arezzo, C., Sun, J.: Self-shrinkers for the mean curvature flow in arbitrary codimension. Math. Z. 274(3–4), 993–1027 (2013) Cavalcante, M.P., Espinar, J.M.: Halfspace type theorems for self-shrinkers. Bull. Lond. Math. Soc. 48(2), 242–250 (2016) Cheng, Q.-M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. Partial Differ. Equ. 52(3–4), 497–506 (2015) Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013) Colding, T.H., Minicozzi, W.P., II.: A Course in Minimal Surfaces, Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011) Colding, T.H., Minicozzi, W.P., II.: Smooth compactness of self-shrinkers. Comment. Math. Helv. 87(2), 463–475 (2012) Colding, T.H., Minicozzi, W.P.: Generic mean curvature flow I generic singularities. Ann. Math. 175(2), 755–833 (2012) Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. 98(2), 445–470 (2009) Daniel, B., Meeks, W.H., III., Rosenberg, H.: Half-space theorems for minimal surfaces in \({\rm Nil}_3\) and \({\rm Sol}_3,\). J. Differ. Geom. 88(1), 41–59 (2011) Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math. 17(3), 443–456 (2013) Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989) Gimeno, V., Palmer, V.: Parabolicity, Brownian exit time and properness of solitons of the direct and inverse mean curvature flow. J. Geom. Anal. 31(1), 579–618 (2021) Hieu, D.T.: A weighted volume estimate and its application to Bernstein type theorems in Gauss space Colloq. Math. 159(1), 25–28 (2020) Hoffman, D., Meeks, W.H., III.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101(2), 373–377 (1990) Hurtado, A., Palmer, V., Rosales, C.: Parabolicity criteria and characterization results for submanifolds of bounded mean curvature in model manifolds with weights. Nonlinear Anal. 192, 111681 (2020) Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990) Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature, In: Greene, R., Yau, S.T. (eds.), Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, Proceedings of Symposium on Pure Mathematics, vol. 54, Amer. Math. Soc, Providence (1990) Impera, D., Pigola, S., Rimoldi, M.: The Frankel property for self-shrinkers from the viewpoint of elliptic PDE’s. J. Reine Angew. Math. 773, 1–20 (2021) Mazet, L.: A general halfspace theorem for constant mean curvature surfaces. Am. J. Math. 135, 801–834 (2013) Nelli, B., Sa Earp, R.: A halfspace theorem for mean curvature \(H = 1/2\) surfaces in \(H^2\times {\mathbb{R} }\). J. Math. Anal. Appl. 365(1), 167–170 (2010) Pigola, S., Rimoldi, M.: Complete self-shrinkers confined into some regions of the space. Ann. Global Anal. Geom. 45, 47–65 (2014) Rodriguez, L., Rosenberg, H.: Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Am. Math. Soc. 126(9), 2755–2762 (1998) Rosenberg, H., Schultze, F., Spruck, J.: The halfspace property and entire minimal graphs in \(M \times {\mathbb{R} },\). J. Differ. Geom. 95, 321–336 (2013) Smoczyk, K.: Self-shrinkers of the mean curvature flow in arbitrary codimension. Int. Math. Res. Not. 48, 2983–3004 (2005) Xin, Y.: Minimal Submanifolds and Related Topics, [MR2035469], 2nd edn. Nankai Tracts in Mathematics, vol. 16, World Scientific Publishing Co. Pte. Ltd., Hackensack (2019) Vieira, M., Zhou, D.: Geometric properties of self-shrinkers in cylinder shrinking Ricci solitons. J. Geom. Anal. 28(1), 170–189 (2018) Wang, L.: A Bernstein type theorem for self-similar shrinkers. Geom. Dedicata 151, 297–303 (2011)