Halfspace type theorems for self-shrinkers in arbitrary codimension
Collectanea Mathematica - Trang 1-11 - 2023
Tóm tắt
In this paper, we generalize some halfspace type theorems for self-shrinkers of codimension 1 to the case of arbitrary codimension.
Tài liệu tham khảo
Arezzo, C., Sun, J.: Self-shrinkers for the mean curvature flow in arbitrary codimension. Math. Z. 274(3–4), 993–1027 (2013)
Cavalcante, M.P., Espinar, J.M.: Halfspace type theorems for self-shrinkers. Bull. Lond. Math. Soc. 48(2), 242–250 (2016)
Cheng, Q.-M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. Partial Differ. Equ. 52(3–4), 497–506 (2015)
Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)
Colding, T.H., Minicozzi, W.P., II.: A Course in Minimal Surfaces, Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)
Colding, T.H., Minicozzi, W.P., II.: Smooth compactness of self-shrinkers. Comment. Math. Helv. 87(2), 463–475 (2012)
Colding, T.H., Minicozzi, W.P.: Generic mean curvature flow I generic singularities. Ann. Math. 175(2), 755–833 (2012)
Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. 98(2), 445–470 (2009)
Daniel, B., Meeks, W.H., III., Rosenberg, H.: Half-space theorems for minimal surfaces in \({\rm Nil}_3\) and \({\rm Sol}_3,\). J. Differ. Geom. 88(1), 41–59 (2011)
Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math. 17(3), 443–456 (2013)
Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)
Gimeno, V., Palmer, V.: Parabolicity, Brownian exit time and properness of solitons of the direct and inverse mean curvature flow. J. Geom. Anal. 31(1), 579–618 (2021)
Hieu, D.T.: A weighted volume estimate and its application to Bernstein type theorems in Gauss space Colloq. Math. 159(1), 25–28 (2020)
Hoffman, D., Meeks, W.H., III.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101(2), 373–377 (1990)
Hurtado, A., Palmer, V., Rosales, C.: Parabolicity criteria and characterization results for submanifolds of bounded mean curvature in model manifolds with weights. Nonlinear Anal. 192, 111681 (2020)
Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)
Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature, In: Greene, R., Yau, S.T. (eds.), Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, Proceedings of Symposium on Pure Mathematics, vol. 54, Amer. Math. Soc, Providence (1990)
Impera, D., Pigola, S., Rimoldi, M.: The Frankel property for self-shrinkers from the viewpoint of elliptic PDE’s. J. Reine Angew. Math. 773, 1–20 (2021)
Mazet, L.: A general halfspace theorem for constant mean curvature surfaces. Am. J. Math. 135, 801–834 (2013)
Nelli, B., Sa Earp, R.: A halfspace theorem for mean curvature \(H = 1/2\) surfaces in \(H^2\times {\mathbb{R} }\). J. Math. Anal. Appl. 365(1), 167–170 (2010)
Pigola, S., Rimoldi, M.: Complete self-shrinkers confined into some regions of the space. Ann. Global Anal. Geom. 45, 47–65 (2014)
Rodriguez, L., Rosenberg, H.: Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Am. Math. Soc. 126(9), 2755–2762 (1998)
Rosenberg, H., Schultze, F., Spruck, J.: The halfspace property and entire minimal graphs in \(M \times {\mathbb{R} },\). J. Differ. Geom. 95, 321–336 (2013)
Smoczyk, K.: Self-shrinkers of the mean curvature flow in arbitrary codimension. Int. Math. Res. Not. 48, 2983–3004 (2005)
Xin, Y.: Minimal Submanifolds and Related Topics, [MR2035469], 2nd edn. Nankai Tracts in Mathematics, vol. 16, World Scientific Publishing Co. Pte. Ltd., Hackensack (2019)
Vieira, M., Zhou, D.: Geometric properties of self-shrinkers in cylinder shrinking Ricci solitons. J. Geom. Anal. 28(1), 170–189 (2018)
Wang, L.: A Bernstein type theorem for self-similar shrinkers. Geom. Dedicata 151, 297–303 (2011)