Half-plane point retrieval queries with independent and dependent geometric uncertainties

Computational Geometry - Tập 115 - Trang 102021 - 2023
Rivka Gitik1, Leo Joskowicz1
1School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel

Tài liệu tham khảo

Agarwal, 1999, Geometric range searching and its relatives, Contemp. Math., 223, 1, 10.1090/conm/223/03131 Agarwal, 2009, Indexing uncertain data, 137 Agarwal, 2017, Convex hulls under uncertainty, Algorithmica, 79, 340, 10.1007/s00453-016-0195-y Arya, 2000, Approximate range searching, Comput. Geom., 17, 135, 10.1016/S0925-7721(00)00022-5 Ben-Tal, 2009 Chazelle, 1985, Optimal solutions for a class of point retrieval problems, J. Symb. Comput., 1, 47, 10.1016/S0747-7171(85)80028-6 Chazelle, 1985, The power of geometric duality, BIT Numer. Math., 25, 76, 10.1007/BF01934990 Chen, 2007, Efficient evaluation of imprecise location-dependent queries, 586 Cheng, 2004, Efficient indexing methods for probabilistic threshold queries over uncertain data, vol. 30, 876 Cole, 1984, Geometric retrieval problems, Inf. Control, 63, 39, 10.1016/S0019-9958(84)80040-6 De Berg, 1997, Computational geometry, 1 De Berg, 2010, Finding structures on imprecise points, 85 Edelsbrunner, 1986, Half-planar range search in linear space and O(n0.695) query time, Inf. Process. Lett., 23, 289, 10.1016/0020-0190(86)90088-8 Fink, 2016, Hyperplane separability and convexity of probabilistic point sets Gitik, 2021, Euclidean minimum spanning trees with independent and dependent geometric uncertainties, Comput. Geom. Theory Appl., 96, 10.1016/j.comgeo.2020.101744 Gitik, 2021, Voronoi diagram and Delaunay triangulation with independent and dependent geometric uncertainties, Int. J. Comput. Geom. Appl., 31, 75, 10.1142/S0218195921500059 Gitik, 2023 Guibas, 1989, Epsilon geometry: building robust algorithms from imprecise computations, 208 Guibas, 1993, Constructing strongly convex approximate hulls with inaccurate primitives, Algorithmica, 9, 534, 10.1007/BF01190154 Javad, 2010, Convex hull of imprecise points modeled by segments, 193 Jooyandeh, 2009, Uncertain Voronoi diagram, Inf. Process. Lett., 109, 709, 10.1016/j.ipl.2009.03.007 Joskowicz, 2014, Topological stability and convex hull with dependent uncertainties, 37 Joskowicz, 2005, Tolerance envelopes of planar mechanical parts with parametric tolerances, Comput. Aided Des., 37, 531, 10.1016/j.cad.2004.07.005 Joskowicz, 2010, Efficient representation and computation of geometric uncertainty: the linear parametric model, Precis. Eng., 34, 2, 10.1016/j.precisioneng.2009.05.002 Kamousi, 2011, Closest pair and the post office problem for stochastic points, 548 Kamousi, 2011, Stochastic minimum spanning trees in Euclidean spaces, 65 Löffler, 2010, Largest and smallest convex hulls for imprecise points, Algorithmica, 56, 235, 10.1007/s00453-008-9174-2 Löffler, 2010, Largest bounding box, smallest diameter, and related problems on imprecise points, Comput. Geom., 43, 419, 10.1016/j.comgeo.2009.03.007 McAllister, 1996, A compact piecewise linear Voronoi diagram for convex sites in the plane, Discrete Comput. Geom., 15, 73, 10.1007/BF02716580 Myers, 2008, The linear parametric geometric uncertainty model: points, lines and their relative positioning Myers, 2012, Point distance and orthogonal range problems with dependent geometric uncertainties, Int. J. Comput. Geom. Appl., 22, 517, 10.1142/S0218195912500148 Myers, 2013, Uncertain lines and circles with dependencies, Comput. Aided Des., 45, 556, 10.1016/j.cad.2012.10.040 Nasson, 1999, Mathematical definition of dimensioning and tolerancing principles, vol. 9, 1 Pfoser, 1999, Capturing the uncertainty of moving-object representations, 111 Sember, 2011 Trajcevski, 2003, Probabilistic range queries in moving objects databases with uncertainty, 39 Welzl, 1988, Partition trees for triangle counting and other range searching problems, 23 Willard, 1982, Polygon retrieval, SIAM J. Comput., 11, 149, 10.1137/0211012 Xue