Half boundary method for two-dimensional steady-state nonlinear convection-diffusion equations

Engineering Analysis with Boundary Elements - Tập 150 - Trang 187-198 - 2023
Xiangyuan Meng1,2, Mei Huang1,2, Boxue Wang1,2, Yaodi Li1,2, Yanting Cheng1,2, Chihiro MORITA3
1School of Nuclear Science and Technology, North China Electric Power University
2Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China
3University of Miyazaki, Miyazaki City, Japan

Tài liệu tham khảo

Linß, 2010, Finite difference schemes for convection-diffusion problems Rui, 2003, An alternative direction iterative method with second-order upwind scheme for convection-diffusion equations[J], Int J Comput Math, 80, 527, 10.1080/0020716021000014222 Stynes, 1995, Finite volume methods for convection-diffusion problems[J], J Comput Appl Math, 63, 83, 10.1016/0377-0427(95)00056-9 Qian, 2012, Yinnian He. The characteristic finite difference Streamline diffusion method for convection-dominated diffusion problems[J], Appl Math Model, 36, 561, 10.1016/j.apm.2011.07.034 Xenophontos, 2016, Finite element approximation of convection-diffusion problems using an exponentially graded mesh[J], Comput Math Appl, 72, 1532, 10.1016/j.camwa.2016.07.008 Rui, 2002, A second order characteristic finite element scheme for convection-diffusion problems[J], Numer Math, 92, 161, 10.1007/s002110100364 Xu, 2018, A modified finite volume method for convection-diffusion-reaction problems[J], Int J Heat Mass Transf, 117, 658, 10.1016/j.ijheatmasstransfer.2017.10.003 Xu, 2019, A high-order finite volume scheme for unsteady convection-dominated convection–diffusion equations[J], Numer Heat Transf Part B: Fundamentals, 76, 253, 10.1080/10407790.2019.1665421 Clain, 2013, A sixth-order finite volume method for multidomain convection–diffusion problem with discontinuous coefficients[J], Comput Methods Appl Mech Eng, 267, 43, 10.1016/j.cma.2013.08.003 Shi, 2009, A low order anisotropic nonconforming characteristic finite element method for a convection-dominated transport problem[J], Appl Math Comput, 213, 411, 10.1016/j.amc.2009.03.034 Shi, 2010, Two low order characteristic finite element methods for a convection-dominated transport problem[J], Comput Math Appl, 59, 3630, 10.1016/j.camwa.2010.03.007 Zhai, 2015, A block-centered characteristic finite difference method for convection-dominated diffusion equation[J], Int Commun Heat Mass Transf, 61, 1, 10.1016/j.icheatmasstransfer.2014.11.003 Aliyi, 2021, Parabolic methods for one dimensional advection-diffusion type equation and application to Burger equation[J], Int J Appl Math Theoret Phys, 7, 40, 10.11648/j.ijamtp.20210702.11 Chen, 2019, A weak Galerkin finite element method for Burgers' equation[J], J Comput Appl Math, 348, 103, 10.1016/j.cam.2018.08.044 Vineet K. Srivastava, Sarita Singh, Mukesh K. Awasthi. Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme[J]. AIP Adv, 2013, 3(8): 821311–7. Khater, 2008, A Chebyshev spectral collocation method for solving Burgers'-type equations[J], J Comput Appl Math, 222, 333, 10.1016/j.cam.2007.11.007 Yang, 2001, Numerical optimization of computing algorithms of the variational nodal method based on transformation of variables[J], Nucl Sci Eng, 139, 174, 10.13182/NSE01-A2230 Zhang, 2019, Development and implementation of an integral variational nodal method to the hexagonal geometry nuclear reactors[J], Ann Nucl Energy, 131, 210, 10.1016/j.anucene.2019.03.031 2006, Thermophysical properties database of materials for light water reactors and heavy water reactors [R]. international, Atomic Energy Agency Abu-Nada, 2010, Effect of nanofluid variable properties on natural convection in enclosures[J], Int J Therm Sci, 49, 479, 10.1016/j.ijthermalsci.2009.09.002 Zhai, 2015, An adaptive local grid refinement method for 2D diffusion equation with variable coefficients based on block-centered finite differences[J], Appl Math Comput, 268, 284, 10.1016/j.amc.2015.06.083 Wang, 2017, Finite-difference lattice Boltzmann model for nonlinear convection-diffusion equations[J], Appl Math Comput, 309, 334, 10.1016/j.amc.2017.04.015 Huang, 2017, A new efficient and accurate procedure for solving heat conduction problems[J], Int J Heat Mass Transf, 111, 508, 10.1016/j.ijheatmasstransfer.2017.03.109 Tang, 2017, A new procedure for solving steady-state and transient-state nonlinear radial conduction problems of nuclear fuel rods[J], Ann Nucl Energy, 110, 492, 10.1016/j.anucene.2017.05.061 Zhao, 2019, A HBM approach for temperature and heat flux convection–diffusion equations and nonlinear problems[J], Nucl Eng Des, 342, 115, 10.1016/j.nucengdes.2018.11.023 Zhao, 2020, Half boundary method for steady state convection-diffusion equations with different boundary conditions[J], Eng Anal Bound Elem, 113, 26, 10.1016/j.enganabound.2019.12.005 Huang, 2009, Natural vibration study on rectangular plates with a line hinge and various boundary conditions[J], J Sound Vibr, 322, 227, 10.1016/j.jsv.2008.11.006 Tang, 2020, A new procedure for solving neutron transfer problems[J], Ann Nucl Energy, 138, 10.1016/j.anucene.2019.107141 Tang, 2018, Numerical investigations on the melting process of the nuclear fuel rod in RIAs and LOCAs[J], Int J Heat Mass Transf, 124, 990, 10.1016/j.ijheatmasstransfer.2018.04.001