Habitat‐dependent geographical variation in ontogenetic allometry of the shiner perch Cymatogaster aggregata Gibbons (Teleostei: Embiotocidae)

Journal of Evolutionary Biology - Tập 20 Số 5 - Trang 1783-1798 - 2007
Pamela J. Woods1
1School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA. [email protected]

Tóm tắt

AbstractStudies of intraspecific morphological variation in fishes have traditionally focused on freshwater rather than marine species. In addition, such studies typically focus on adults, although causes and intensities of selective pressures most likely vary through an individual's lifetime. In this study, body and head shape of a marine species, shiner perch Cymatogaster aggregata Gibbons were compared among localities along the Pacific Northwest coast of North America. Evidence was found for intraspecific variation in ontogenetic allometry, and for a closer correlation of body shape with environment rather than geographical proximity. This correlation with environment was more evident in younger fish, thereby demonstrating the importance of analysing multiple life stages. A common garden experiment suggests both environmental and genetic bases for the observed differences. Recognizing intraspecific ecomorphological complexity and its specificity to habitat and/or life stage can have important consequences for understanding the role of local adaptation and population dynamics in macroecology.

Từ khóa


Tài liệu tham khảo

10.1023/A:1016050018875

Bane G.W., 1970, Studies on the shiner perch, Cymatogaster aggregata Gibbons, in Upper Newport Bay, California, Wassman J. Biol., 28, 259

10.1038/nature04325

10.2307/1352657

Bernardi G., 2000, Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a pelagic larval stage, Evolution, 54, 226

10.1086/343878

Bookstein F.L., 1991, Morphometric Tools for Landmark Data: Geometry and Biology, 435

10.1111/j.1095-8649.2002.tb02502.x

10.1139/f84-125

Cassano V.P.F.1998.The phylogeny of the Embiotocidae (Teleostei: Perciformes): Cladistic Analyses of Comparative Morphometry and 16S rDNA Mitochondrial Sequences.PhD thesis University of California Los Angeles 183pp.

10.1007/s00442-003-1396-z

10.1111/j.1469-7998.1989.tb02499.x

Conover D.O., 1998, Local adaptation in marine fishes: evidence and implications for stock enhancement, Bull. Mar. Sci., 62, 477

10.1111/j.1095-8649.1996.tb01117.x

10.1007/BF00334665

10.1111/j.1558-5646.1994.tb02208.x

De Martini E.E., 1969, A correlative study of the ecology and comparative feeding mechanism morphology of the Embiotocidae (Surf‐fishes) as evidence for the family's adaptive radiation into available ecological niches, Wasmann J. Biol., 27, 177

10.2307/1937360

10.1073/pnas.85.6.1878

10.1111/j.1095-8649.1998.tb00110.x

10.1098/rspb.2004.3029

Garrison K.J., 1982, Review of the Early Life History of Puget Sound Fishes, 739

10.1139/f96-085

Hedgecock D., 1989, Genetic and morphometric variation in the Pacific sardine Sardinops sagax caerulea: comparisons and contrasts with historical data and with variability in the northern anchovy Engraulis mordax, Fish. Bull., 87, 653

10.1034/j.1600-0633.2001.100105.x

10.1023/A:1013367100865

10.1111/j.0014-3820.2002.tb01432.x

10.1111/j.0014-3820.2001.tb01298.x

Hudson A.G., 2007, The geography of speciation and adaptive radiation in coregonines, Arch. Hydrobiol., ??

10.1016/0003-9969(95)00074-Y

10.2307/2261336

10.1007/BF00349798

10.1111/j.1558-5646.1996.tb03628.x

10.1111/j.1469-185X.1997.tb00026.x

10.1023/A:1008839605380

Lecomte F., 2004, Role of early life‐history constraints and resource polymorphism in the segregation of sympatric populations of an estuarine fish, Evol. Ecol. Res., 6, 631

10.1002/(SICI)1097-4687(199808)237:2<137::AID-JMOR5>3.0.CO;2-Z

10.1023/A:1023902922843

10.1007/BF00005130

10.1007/BF00379047

10.2307/2845450

10.1016/S0166-445X(02)00055-3

10.1046/j.1095-8649.2003.00159.x

10.1046/j.1095-8649.2003.00199.x

10.2307/2390008

10.1007/BF00005921

10.1111/j.1095-8649.2004.00379.x

Odenweller D.B., 1975, The life history of the shiner surfperch Cymatogaster aggregata Gibbons, in Anaheim Bay, California, Cal. Dept. Fish Game Bull 165, 107

10.1139/f93-215

10.1111/j.1420-9101.2005.00954.x

Phillips R.C., 1984, The Ecology of Eelgrass Meadows in the Pacific Northwest: A Community Profile, 85

Proctor C.M. Garcia J.C. Galvin D.V. Lewis G.B. Loehr L.L.&Massa A.M.1980.An Ecological Characterization of the Pacific Northwest Coastal Region vol. 2U.S. Fish and Wildl. Serv. Biological Services Program. FWS/OBS‐79/12.

10.1006/anbe.1994.1300

10.1046/j.1420-9101.1989.2060409.x

10.1007/BF01237711

Rohlf F.J.2004.http://life.bio.sunysb.edu/morph/

10.1098/rspb.2005.3463

10.1111/j.1095-8649.2000.tb00775.x

10.1086/285901

10.2307/2390285

10.1098/rspb.2006.3539

Shaw M.C.1995.Diel predater–prey interactions between shiner perch andCaprella californica relative to caprellid distribution uponZostera marina.MS thesis.Western Washington University Bellingham 60pp. Padilla Bay National Estuarine Research Reserve Reprint No. 23.

10.1007/BF00390631

Simenstad C.A., 1983, The Ecology of Estuarine Channels of the Pacific Northwest Coast: A Community Profile, 181

10.1016/B978-0-12-404070-0.50026-0

10.1111/j.1095-8312.1989.tb01579.x

10.1146/annurev.ecolsys.27.1.111

10.1111/j.0014-3820.2002.tb01408.x

Suomela A.J.1931.The Age and Growth ofCymatogaster aggregatusGibbons Collected in Puget Sound Washington.MS thesis University of Washington Washington 43pp.

10.1111/j.1558-5646.1992.tb00615.x

10.1016/S0165-7836(99)00069-7

10.1139/f89-180

10.1139/f91-083

Tarp F.H., 1952, A revision of the family Embiotocidae, 99

10.1023/A:1008955229420

10.1023/B:EBFI.0000005763.96260.2a

10.1111/j.1558-5646.1999.tb04568.x

10.1007/BF00329796

10.1023/A:1019671131001

Walker J.A., 1997, Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape, Biol. J. Linn. Soc., 61, 3

10.1111/j.1558-5646.1987.tb05805.x

10.1093/icb/24.1.107

10.1139/f86-094

10.1139/f69-227

10.1111/j.1095-8312.1992.tb00640.x