HYBRID PROXIMAL POINT AND EXTRAGRADIENT ALGORITHMS FOR SOLVING EQUILIBRIUM PROBLEMS
Tóm tắt
We propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.
Tài liệu tham khảo
Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optim. 62, 271–283 (2013)
Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)
Anh, P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam 34, 183–200 (2009)
Anh, P.N.: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 36, 209–228 (2008)
Anh, P.N., Hien, N.D.: The extragradient-Armijo method for pseudomonotone equilibrium problems and strict pseudocontractions. Fixed Point Theory Appl. 2012, 82 (2012)
Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Math. Appl. 61, 2588–2595 (2011)
Anh, P.N., Kim, J.K., Nam, J.M.: Strong convergence of an extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012)
Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011)
Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)
Ceng, L.C., Cubiotti, P., Yao, J.C.: An implicit iterative scheme for monotone variational inequalities and fixed point problems. Nonlinear Anal. 69, 2445–2457 (2008)
Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)
Facchinei, F., Pang, J.S.: Finite-Dimensional variational inequalities and complementarity problems. Springer-Verlag, New York (2003)
Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert spaces. Optim. 59, 1259–1274 (2010)
Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)
Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2000)
Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Matecon. 12, 747–756 (1976)
Martinet, B.: Régularisation ďinéquations variationelles par approximations successives. Rev. Franc. Automat. Inform. 4, 154–158 (1970)
Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2003)
Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)
Moudafi, A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal. Theory 18, 1159–1166 (1992)
Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)
Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)
Takahashi, S., Toyoda, M.: Weakly convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)
Takahashi, S., Takahashi, M.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)
Tran, Q.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008)
Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)