HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis

RSC Advances - Tập 6 Số 37 - Trang 30895-30904
Yanjiao Ding1,2,3,4,5, Zhenyu Li1,2,3,4,5, Yaoyao Li1,2,3,4,5, Chunhua Lu1,2,3,4,5, Haoxin Wang1,3,5,6, Yuemao Shen1,2,3,4,6, Liangcheng Du7,8,9
1Jinan
2Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
3P. R. China
4School of Pharmaceutical Sciences
5Shandong University
6State Key Laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
7Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
8Lincoln
9University of Nebraska-Lincoln

Tóm tắt

HSAF, a potent antifungal agent, induced the apoptosis of Candida albicans through reactive oxygen species production. The binding model of HSAF to β-tubulin was simulated by Amber 12 and shown by PyMoL.

Từ khóa


Tài liệu tham khảo

Belenky, 2013, Cell Rep., 3, 350, 10.1016/j.celrep.2012.12.021

Hof, 2006, Mycoses, 49, 2, 10.1111/j.1439-0507.2006.01295.x

Grover, 2010, Indian J. Pharmacol., 42, 9, 10.4103/0253-7613.62396

Hwang, 2014, J. Appl. Microbiol., 117, 1400, 10.1111/jam.12633

Brown, 2014, Cell, 159, 1168, 10.1016/j.cell.2014.10.044

Li, 2012, MedChemComm, 3, 982, 10.1039/c2md20026k

Lou, 2011, Biochemistry, 51, 4, 10.1021/bi2015025

Cao, 2010, Org. Lett., 12, 4652, 10.1021/ol1020064

Li, 2006, Mol. Biol. Cell, 17, 1218, 10.1091/mbc.E05-06-0533

Keren, 2013, Science, 339, 1213, 10.1126/science.1232688

Kohanski, 2008, Cell, 135, 679, 10.1016/j.cell.2008.09.038

A. W. Fothergill , in Interactions of Yeasts, Moulds, and Antifungal Agents, ed. G. S. Hall, Humana Press, Clifton, 1st edn, 2012, ch. 2, pp. 65–74

Brayman, 2003, Antimicrob. Agents Chemother., 47, 3305, 10.1128/AAC.47.10.3305-3310.2003

Hwang, 2011, Biochem. Biophys. Res. Commun., 405, 267, 10.1016/j.bbrc.2011.01.026

Phillips, 2003, Proc. Natl. Acad. Sci. U. S. A., 100, 14327, 10.1073/pnas.2332326100

Park, 2010, Biochem. Biophys. Res. Commun., 394, 170, 10.1016/j.bbrc.2010.02.138

Arnold, 2006, Bioinformatics, 22, 195, 10.1093/bioinformatics/bti770

Guex, 2009, Electrophoresis, 30, S162, 10.1002/elps.200900140

Kiefer, 2009, Nucleic Acids Res., 37, D387, 10.1093/nar/gkn750

Biasini, 2014, Nucleic Acids Res., 42, W252, 10.1093/nar/gku340

Case, 2005, J. Comput. Chem., 26, 1668, 10.1002/jcc.20290

Sousa da Silva, 2012, BMC Res. Notes, 5, 367, 10.1186/1756-0500-5-367

Pozzatti, 2010, Med. Mycol., 20, 185, 10.1016/j.mycmed.2010.06.003

Liu, 2015, PLoS One, 10, e0128009, 10.1371/journal.pone.0128009

Baines, 2005, Nature, 434, 658, 10.1038/nature03434

Vanlangenakker, 2011, Cell Death Differ., 19, 75, 10.1038/cdd.2011.164

Zebell, 2015, Cell Host Microbe, 18, 402, 10.1016/j.chom.2015.10.001

Muñoz-Pinedo, 2012, Cell Death Dis., 3, e248, 10.1038/cddis.2011.123

Weingärtner, 2012, PLoS One, 7, e42070, 10.1371/journal.pone.0042070

Leventis, 2010, Annu. Rev. Biophys., 39, 407, 10.1146/annurev.biophys.093008.131234

Hao, 2013, Antimicrob. Agents Chemother., 57, 326, 10.1128/AAC.01366-12

Hwang, 2012, Biochimie, 94, 1784, 10.1016/j.biochi.2012.04.010

Mollinedo, 2003, Apoptosis, 8, 413, 10.1023/A:1025513106330

Shin, 2008, Biochem. Pharmacol., 75, 383, 10.1016/j.bcp.2007.08.027

Lu, 2014, Trends Microbiol., 22, 707, 10.1016/j.tim.2014.09.001

Phillips, 2003, Proc. Natl. Acad. Sci. U. S. A., 100, 14327, 10.1073/pnas.2332326100

Lee, 2015, Curr. Microbiol., 70, 383, 10.1007/s00284-014-0734-1

Zhu, 2011, PLoS One, 6, e28830, 10.1371/journal.pone.0028830

Cho, 2011, Biochim. Biophys. Acta, 1810, 1246, 10.1016/j.bbagen.2011.08.011