HPLC-CUPRAC post-column derivatization method for the determination of antioxidants: a performance comparison between porous silica and core-shell column packing

Syed A. Haque1, Socrates Jose P. Cañete1
1Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, USA

Tóm tắt

An HPLC method employing a post-column derivatization strategy using the cupric reducing antioxidant capacity reagent (CUPRAC reagent) for the determining antioxidants in plant-based materials leverages the separation capability of regular HPLC approaches while allowing for detection specificity for antioxidants. Three different column types, namely core-shell and porous silica including two chemically different core-shell materials (namely phenyl-hexyl and C18), were evaluated to assess potential improvements that could be attained by changing from a porous silica matrix to a core-shell matrix. Tea extracts were used as sample matrices for the evaluation specifically looking at catechin and epigallocatechin gallate (EGCG). Both the C18 and phenyl-hexyl core-shell columns showed better performance compared to the C18 porous silica one in terms of separation, peak shape, and retention time. Among the two core-shell materials, the phenyl-hexyl column showed better resolving power compared to the C18 column. The CUPRAC post-column derivatization method can be improved using core-shell columns and suitable for quantifying antioxidants, exemplified by catechin and EGCG, in tea samples.

Tài liệu tham khảo

Apak R, Güçlü K, Özyürek M, Bektaşoğlu B, Bener M. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. In: Armstrong D, editor. Advanced protocols in oxidative stress II. Totowa, NJ: Humana Press; 2010. p. 215–39. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52:7970–81. Apak R, Güçlü K, Özyürek M, Karademir SE, Altun M. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res. 2005;39:949–61. Cabooter D, Billen J, Terryn H, Lynen F, Sandra P, Desmet G. Kinetic plot and particle size distribution analysis to discuss the performance limits of sub-2μm and supra-2μm particle columns. J Chromatogr A. 2008;1204:1–10. Dai X, Huang Q, Zhou B, Gong Z, Liu Z, Shi S. Preparative isolation and purification of seven main antioxidants from Eucommia Ulmoides Oliv. (Du-zhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food Chem. 2013;139:563–70. Fekete S, Fekete J. The impact of extra-column band broadening on the chromatographic efficiency of 5cm long narrow-bore very efficient columns. J Chromatogr A. 2011;1218:5286–91. Fountain KJ, Neue UD, Grumbach ES, Diehl DM. Effects of extra-column band spreading, liquid chromatography system operating pressure, and column temperature on the performance of sub-2-μm porous particles. J Chromatogr A. 2009;1216:5979–88. Gritti F, Farkas T, Heng J, Guiochon G. On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: theory and practice. J Chromatogr A. 2011;1218:8209–21. Gritti F, Felinger A, Guiochon G. Influence of the errors made in the measurement of the extra-column volume on the accuracies of estimates of the column efficiency and the mass transfer kinetics parameters. J Chromatogr A. 2006;1136:57–72. Gritti F, Guiochon G. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography. J Chromatogr A. 2005;1099:1–42. Gritti F, Guiochon G. On the extra-column band-broadening contributions of modern, very high pressure liquid chromatographs using 2.1mm I.D. columns packed with sub-2μm particles. J Chromatogr A. 2010;1217:7677–89. Gritti F, Guiochon G. Diffusion models in chromatographic columns packed with fully and superficially porous particles. Chem Eng Sci. 2011;66:3773–81. Gritti F, Guiochon G. Facts and legends about columns packed with sub-3-μm core-shell particles. LCGC N Am. 2012a;30:586–95. Gritti F, Guiochon G. Repeatability of the efficiency of columns packed with sub-3μm core–shell particles: part I. 2.6μm Kinetex-C18 particles in 4.6mm and 2.1mm×100mm column formats. J Chromatogr A. 2012b;1252:31–44. Gritti F, Guiochon G. Rapid development of core–shell column technology: accurate measurements of the intrinsic column efficiency of narrow-bore columns packed with 4.6 down to 1.3μm superficially porous particles. J Chromatogr A. 2014;1333:60–9. Hayes R, Ahmed A, Edge T, Zhang H. Core–shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 2014;1357:36–52. Heinisch S, Desmet G, Clicq D, Rocca J-L. Kinetic plot equations for evaluating the real performance of the combined use of high temperature and ultra-high pressure in liquid chromatography. J Chromatogr A. 2008;1203:124–36. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53:1841–56. Jones A, Pravadali-Cekic S, Dennis GR, Bashir R, Mahon PJ, Shalliker RA. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal Chim Acta. 2017;967:93–101. Karaman Ş, Tütem E, Sözgen Başkan K, Apak R. Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC–CUPRAC assay. Food Chem. 2010;120(4):1201–9. Li Y-J, Chen J, Li Y, Li P. Identification and quantification of free radical scavengers in the flower buds of Lonicera species by online HPLC-DPPH assay coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr. 2012;26:449–57. Ou Z-Q, Schmierer DM, Rades T, Larsen L, McDowell A. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J Pharm Pharmacol. 2013;65:271–9. Özyürek M, Güçlü K, Apak R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal Chem. 2011;30:652–64. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53:4290–302. Tanaka N, McCalley DV. Core–shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal Chem. 2016;88:279–98. Usher KM, Simmons CR, Dorsey JG. Modeling chromatographic dispersion: a comparison of popular equations. J Chromatogr A. 2008;1200:122–8. Yıldız L, Başkan KS, Tütem E, Apak R. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta. 2008;77(1):304–13. Zacharis CK, Tzanavaras PD. Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: a review on instrumentation and chemistries. Anal Chim Acta. 2013;798:1–24.