HMMTree: A computer program for latent-class hierarchical multinomial processing tree models
Tóm tắt
Latent-class hierarchical multinomial models are an important extension of the widely used family of multinomial processing tree models, in that they allow for testing the parameter homogeneity assumption and provide a framework for modeling parameter heterogeneity. In this article, the computer program HMMTree is introduced as a means of implementing latent-class hierarchical multinomial processing tree models. HMMTree computes parameter estimates, confidence intervals, and goodness-of-fit statistics for such models, as well as the Fisher information, expected category means and variances, and posterior probabilities for class membership. A brief guide to using the program is provided.
Tài liệu tham khảo
Akaike, H. (1974). A new look at the statistical model identification.IEEE Transactions on Automatic Control,19, 716–723.
Ashby, F. G., Prinzmetal, W., Ivry, R., &Maddox, W. T. (1996). A formal theory of feature binding in object perception.Psychological Review,103, 165–192.
Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment.Psychological Assessment,10, 331–344.
Batchelder, W. H., &Crowther, C. S. (1997). Multinomial processing tree models of factorial categorization.Journal of Mathematical Psychology,41, 45–55.
Batchelder, W. H., &Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling.Psychonomic Bulletin & Review,6, 57–86.
Bayen, U. J., Murnane, K., &Erdfelder, E. (1996). Source discrimination, item detection, and multinomial models of source monitoring.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 197–215.
Brainerd, C. J., Stein, L. M., &Reyna, V. F. (1998). On the development of conscious and unconscious memory.Developmental Psychology,34, 342–357.
Erdfelder, E. (2000).Multinomiale Modelle in der kognitiven Psychologie [Multinomial models in cognitive psychology]. Unpublished Habilitationsschrift, Universität Bonn.
Evans, J. St. B. T. (1977). Toward a statistical theory of reasoning.Quarterly Journal of Experimental Psychology,29, 621–635.
Hu, X. (1999). Multinomial processing tree models: An implementation.Behavior Research Methods, Instruments, & Computers,31, 689–695.
Hu, X., &Batchelder, W. H. (1994). The statistical analysis of engineering processing tree models with the EM algorithm.Psychometrika,59, 21–47.
Hu, X., &Phillips, G. A. (1999). GPT.EXE: A powerful tool for the visualization and analysis of general processing tree models.Behavior Research Methods, Instruments, & Computers,31, 220–234.
Klauer, K. C. (2006). Hierarchical multinomial processing tree models: A latent-class approach.Psychometrika,71, 7–31.
Klauer, K. C., Musch, J., &Naumer, B. (2000). On belief bias in syllogistic reasoning.Psychological Review,107, 852–884.
Klauer, K. C., &Wegener, I. (1998). Unraveling social categorization in the “Who said what?” paradigm.Journal of Personality & Social Psychology,75, 1155–1178.
Riefer, D. M., &Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes.Psychological Review,95, 318–339.
Riefer, D. M., &Batchelder, W. H. (1991). Statistical inference for multinomial processing tree models. In J.-P. Doignon & J.-C. Falmagne (Eds.),Mathematical psychology: Current developments (pp. 313–335). New York: Springer.
Rothkegel, R. (1999). AppleTree: A multinomial processing tree modeling program for Macintosh computers.Behavior Research Methods, Instruments, & Computers,31, 696–700.
Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics,6, 461–464.
Schweickert, R. (1993). A multinomial processing tree model for degradation and redintegration in immediate recall.Memory & Cognition,21, 168–175.