HMGB1 as a therapeutic target in disease

Journal of Cellular Physiology - Tập 236 Số 5 - Trang 3406-3419 - 2021
Jiaming Xue1,2, Joelle Sacks Suarez2, Michael Minaai2, Shuangjing Li3,2, Giovanni Gaudino2, Harvey I. Pass4, Michele Carbone2, Haining Yang2
1John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii USA
2Thoracic Oncology Program University of Hawaii Cancer Center Honolulu Hawaii USA
3Central Laboratory of Liaocheng People's Hospital Liaocheng Shandong China
4Department of Cardiothoracic Surgery New York University Langone Medical Center New York New York USA

Tóm tắt

AbstractHigh‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases.

Từ khóa


Tài liệu tham khảo

Ayer L. M., 1994, Antibodies to high mobility group proteins in systemic sclerosis, Journal of Rheumatology, 21, 2071

10.1073/pnas.1522288113

10.1038/onc.2012.49

10.1002/j.1460-2075.1992.tb05144.x

10.1093/emboj/cdg516

10.1158/1078-0432.CCR-11-2259

10.21037/atm.2017.04.29

10.1007/s13277-016-5261-1

10.1194/jlr.C400018-JLR200

10.1016/j.biopha.2018.08.059

10.1158/0008-5472.Can-14-2147

10.1126/science.1168988

10.1007/s11010-014-1978-6

10.1016/j.bbrc.2013.12.064

10.1002/ijc.29125

10.15252/embr.201947788

Diflunisal. (2012). InLiverTox: Clinical and research information on drug‐induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases.

10.1016/j.bbadis.2017.07.012

10.18632/oncotarget.7050

10.1016/j.ijbiomac.2018.05.044

10.3892/mmr.2017.6496

10.1093/embo-reports/kvf198

10.1189/jlb.5HI0316-128RR

10.1002/art.23729

10.1038/nrrheum.2011.222

10.1073/pnas.1121146109

10.1074/jbc.270.43.25752

10.1038/s41419-018-1019-6

Huttunen H. J., 2002, Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis, Cancer Research, 62, 4805

10.1038/srep15971

10.1248/bpb.b18-00818

10.18632/oncotarget.13136

10.1158/0008-5472.Can-11-3481

10.1038/onc.2012.631

10.1053/j.gastro.2013.12.015

10.1523/jneurosci.3815-05.2006

10.1016/j.intimp.2015.03.014

10.2119/2008-00034.Klune

10.1002/art.11161

10.4049/jimmunol.1000803

10.1186/s13046-017-0519-z

10.1007/s13577-019-00244-6

10.3858/emm.2012.44.4.021

10.1042/BSR20181016

10.3892/ol.2016.5198

10.1080/15384101.2017.1288324

10.1096/fj.07-8770com

10.4161/auto.7.1.14005

10.1080/15384047.2015.1017691

10.1158/0008-5472.Can-11-2291

10.1038/nri1594

10.1073/pnas.1316925111

10.1111/cei.12062

10.26355/eurrev_201803_14583

10.1007/s00296-010-1636-6

10.2119/molmed.2013.00164

10.1126/scitranslmed.aao3089

10.3109/08916934.2012.719946

10.3389/fimmu.2016.00182

10.1016/S0021-9258(18)55361-8

10.1016/j.chembiol.2007.03.007

10.1523/jneurosci.2435-08.2008

10.4049/jimmunol.0801873

10.1002/art.27590

10.1189/jlb.1108713

10.1002/eji.201444908

10.18632/oncotarget.15152

10.3390/diagnostics5020219

10.1038/cddis.2014.48

10.1038/nature00858

10.2119/molmed.2010.00264

10.1084/jem.20111739

10.1016/j.biopha.2019.109248

10.1155/2012/295081

10.1016/j.neulet.2013.11.006

10.1146/annurev.immunol.021908.132603

10.1038/s41598-017-06205-z

10.1038/srep21884

10.3389/fimmu.2018.01518

10.1038/35012626

10.1083/jcb.200911078

10.1165/rcmb.2008-0119OC

10.1038/ni1457

10.1002/jcb.28082

10.1084/jem.20160217

10.1038/sj.embor.embor741

10.1084/jem.20042614

10.2147/OTT.S206932

10.1073/pnas.192222999

10.1111/cei.12036

10.2119/molmed.2015.00243

10.1084/jem.20120189

10.1016/j.molimm.2012.10.037

10.1126/science.285.5425.248

10.1016/j.prp.2018.12.024

10.1038/nm1124

10.1038/srep46243

10.3892/mmr.2016.5340

10.1016/j.jep.2011.12.041

10.1016/j.jss.2004.10.019

10.1002/jcp.26383

10.18632/aging.102591

10.18632/oncotarget.10413

10.1016/j.bbrc.2018.01.097

10.1371/journal.pone.0115982

10.1073/pnas.2007622117

10.1155/2018/2754941

10.1073/pnas.0604008103

10.1016/j.bcp.2013.05.013

10.1073/pnas.1003893107

10.1073/pnas.2434651100

10.1073/pnas.1006542107

10.1084/jem.20141318

10.1172/jci.insight.85375

10.1016/j.biopha.2015.01.013

10.1073/pnas.1216195109

10.1007/s10875-008-9252-x

10.1097/01.shk.0000225404.51320.82

10.1097/MPA.0b013e31818166b4

10.3389/fimmu.2017.00142

10.1097/MD.0000000000014069

10.1002/jcb.26021

10.1111/sji.12165

10.4049/jimmunol.181.7.5015

10.1186/s13075-020-02195-y