HMA4 and IRT3 as indicators accounting for different responses to Cd and Zn by hyperaccumulator Arabidopsis halleri ssp. gemmifera
Tài liệu tham khảo
Agrawal, 2011, Detoxification of heavy metals: state of art, Soil Biol., 30, 1, 10.1007/978-3-642-21408-0_1
Asaf, 2017, Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: structures and comparative analysis, Sci. Rep., 7, 1, 10.1038/s41598-017-07891-5
Assunção, 2010, Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency, PNAS, 107, 10296, 10.1073/pnas.1004788107
Balafrej, 2020, Zinc hyperaccumulation in plants: a review, Plants, 9, 562, 10.3390/plants9050562
Benavides, 2005, Cadmium toxicity in plants, Braz. J. Plant Physiol., 17, 21, 10.1590/S1677-04202005000100003
Bothe, H. (2011). Plants in Heavy Metal Soils. In: Sherameti I., Varma A. (eds) Detoxification of Heavy Metals. Soil Biology (Vol. 30, pp. 35–58). https://doi.org/10.1007/978-3-642-21408-0.
Briskine, 2017, Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology, Mol. Ecol. Resour., 17, 1025, 10.1111/1755-0998.12604
Chandra, 2016, Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids, Forest Sci. Technol., 12, 55, 10.1080/21580103.2015.1044024
Chaudhary, 2015, Heavy metal ATPase (HMA2, HMA3, and HMA4) genes in hyperaccumulation mechanism of heavy metals, 545
Chen, 2018, AtHMA4 drives natural variation in leaf Zn concentration of Arabidopsis thaliana, Front. Plant Sci., 9, 1
Chiang, 2006, Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator, Environ. Sci. Technol., 40, 6792, 10.1021/es061432y
Corso, 2020, Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants, Metallomics, 12, 840, 10.1039/d0mt00043d
Corso, 2018, Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri, New Phytol., 218, 283, 10.1111/nph.14948
Fukuda, 2008, Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation, J. Anal. At. Spectrom., 23, 1068, 10.1039/b803602k
Fukuda, 2020, Visible cellular distribution of cadmium and zinc in the hyperaccumulator: arabidopsis halleri ssp. gemmifera determined by 2-D X-ray fluorescence imaging using high-energy synchrotron radiation, Metallomics, 12, 193, 10.1039/c9mt00243j
Gupta, 2016, Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation, Rev. Environ. Sci. Biotechnol., 15, 89, 10.1007/s11157-016-9390-1
Hanikenne, 2008, Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 453, 391, 10.1038/nature06877
Kajala, 2019, Real-time whole-plant dynamics of heavy metal transport in Arabidopsis halleri and Arabidopsis thaliana by gamma-ray imaging, Plant Direct., 3, 1, 10.1002/pld3.131
Kashem, 2007, Assessing the potential of Arabidopsis halleri ssp gemmifera as a new cadmium hyperaccumulator grown in hydroponics, Can. J. Plant Sci., 87, 499, 10.4141/CJPS06058
Kashem, 2010, Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution, Environ. Sci. Pollut. Res., 17, 1174, 10.1007/s11356-009-0193-6
Krämer, 2010, Metal Hyperaccumulation in Plants, Annu. Rev. Plant Biol., 61, 517, 10.1146/annurev-arplant-042809-112156
Lin, 2012, The molecular mechanism of zinc and cadmium stress response in plants, Cell. Mol. Life Sci., 69, 3187, 10.1007/s00018-012-1089-z
Lin, 2009, Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter, New Phytol., 182, 392, 10.1111/j.1469-8137.2009.02766.x
Mishra, 2017, Protein biochemistry and expression regulation of cadmium/Zinc pumping ATPases in the hyperaccumulator plants arabidopsis halleri and Noccaea caerulescens, Front. Plant Sci., 8, 1, 10.3389/fpls.2017.00835
Nouet, 2015, Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri, J. Exp. Bot., 66, 5783, 10.1093/jxb/erv280
Ricachenevsky, 2018, You shall not pass : root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality, Front. Plant Sci., 9, 1, 10.3389/fpls.2018.00412
Shanmugam, 2013, Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe, Front. Plant Sci., 4, 1, 10.3389/fpls.2013.00281
Talke, 2006, Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator arabidopsis halleri, Plant Physiol., 142, 148, 10.1104/pp.105.076232
Ueno, 2008, Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri, Plant Cell Physiol., 49, 540, 10.1093/pcp/pcn026
Ueno, 2005, Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR, Planta, 221, 928, 10.1007/s00425-005-1491-y
Verbruggen, 2009, Molecular mechanisms of metal hyperaccumulation in plants, New Phytol, 181, 759, 10.1111/j.1469-8137.2008.02748.x
Verbruggen, 2013, Tolerance to cadmium in plants: the special case of hyperaccumulators, BioMetals, 26, 633, 10.1007/s10534-013-9659-6
Wong, 2009, HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana, New Phytol, 181, 71, 10.1111/j.1469-8137.2008.02638.x
Zhao, 2006, Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri, New Phytol, 172, 646, 10.1111/j.1469-8137.2006.01867.x
Zitka, 2013, Metal Transporter in Plants, In Heavy Metal Stress in Plants, 19, 10.1007/978-3-642-38469-1_2
Zlobin, 2021, Current understanding of plant zinc homeostasis regulation mechanisms, Plant Physiol. Biochem., 162, 327, 10.1016/j.plaphy.2021.03.003