HMA4 and IRT3 as indicators accounting for different responses to Cd and Zn by hyperaccumulator Arabidopsis halleri ssp. gemmifera

Plant Stress - Tập 2 - Trang 100042 - 2021
Christine Dwi A P Wiyono1, Chihiro Inoue2, Mei-Fang Chien1
1Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-20 Aoba-ku, Sendai 980-8579, Japan
2Graduate School of Environmental Studies, Tohoku University, Aramaki-aza Aoba 6-6-20, Aoba-ku, Sendai, 980-8579, Japan

Tài liệu tham khảo

Agrawal, 2011, Detoxification of heavy metals: state of art, Soil Biol., 30, 1, 10.1007/978-3-642-21408-0_1 Asaf, 2017, Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: structures and comparative analysis, Sci. Rep., 7, 1, 10.1038/s41598-017-07891-5 Assunção, 2010, Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency, PNAS, 107, 10296, 10.1073/pnas.1004788107 Balafrej, 2020, Zinc hyperaccumulation in plants: a review, Plants, 9, 562, 10.3390/plants9050562 Benavides, 2005, Cadmium toxicity in plants, Braz. J. Plant Physiol., 17, 21, 10.1590/S1677-04202005000100003 Bothe, H. (2011). Plants in Heavy Metal Soils. In: Sherameti I., Varma A. (eds) Detoxification of Heavy Metals. Soil Biology (Vol. 30, pp. 35–58). https://doi.org/10.1007/978-3-642-21408-0. Briskine, 2017, Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology, Mol. Ecol. Resour., 17, 1025, 10.1111/1755-0998.12604 Chandra, 2016, Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids, Forest Sci. Technol., 12, 55, 10.1080/21580103.2015.1044024 Chaudhary, 2015, Heavy metal ATPase (HMA2, HMA3, and HMA4) genes in hyperaccumulation mechanism of heavy metals, 545 Chen, 2018, AtHMA4 drives natural variation in leaf Zn concentration of Arabidopsis thaliana, Front. Plant Sci., 9, 1 Chiang, 2006, Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator, Environ. Sci. Technol., 40, 6792, 10.1021/es061432y Corso, 2020, Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants, Metallomics, 12, 840, 10.1039/d0mt00043d Corso, 2018, Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri, New Phytol., 218, 283, 10.1111/nph.14948 Fukuda, 2008, Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation, J. Anal. At. Spectrom., 23, 1068, 10.1039/b803602k Fukuda, 2020, Visible cellular distribution of cadmium and zinc in the hyperaccumulator: arabidopsis halleri ssp. gemmifera determined by 2-D X-ray fluorescence imaging using high-energy synchrotron radiation, Metallomics, 12, 193, 10.1039/c9mt00243j Gupta, 2016, Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation, Rev. Environ. Sci. Biotechnol., 15, 89, 10.1007/s11157-016-9390-1 Hanikenne, 2008, Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 453, 391, 10.1038/nature06877 Kajala, 2019, Real-time whole-plant dynamics of heavy metal transport in Arabidopsis halleri and Arabidopsis thaliana by gamma-ray imaging, Plant Direct., 3, 1, 10.1002/pld3.131 Kashem, 2007, Assessing the potential of Arabidopsis halleri ssp gemmifera as a new cadmium hyperaccumulator grown in hydroponics, Can. J. Plant Sci., 87, 499, 10.4141/CJPS06058 Kashem, 2010, Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution, Environ. Sci. Pollut. Res., 17, 1174, 10.1007/s11356-009-0193-6 Krämer, 2010, Metal Hyperaccumulation in Plants, Annu. Rev. Plant Biol., 61, 517, 10.1146/annurev-arplant-042809-112156 Lin, 2012, The molecular mechanism of zinc and cadmium stress response in plants, Cell. Mol. Life Sci., 69, 3187, 10.1007/s00018-012-1089-z Lin, 2009, Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter, New Phytol., 182, 392, 10.1111/j.1469-8137.2009.02766.x Mishra, 2017, Protein biochemistry and expression regulation of cadmium/Zinc pumping ATPases in the hyperaccumulator plants arabidopsis halleri and Noccaea caerulescens, Front. Plant Sci., 8, 1, 10.3389/fpls.2017.00835 Nouet, 2015, Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri, J. Exp. Bot., 66, 5783, 10.1093/jxb/erv280 Ricachenevsky, 2018, You shall not pass : root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality, Front. Plant Sci., 9, 1, 10.3389/fpls.2018.00412 Shanmugam, 2013, Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe, Front. Plant Sci., 4, 1, 10.3389/fpls.2013.00281 Talke, 2006, Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator arabidopsis halleri, Plant Physiol., 142, 148, 10.1104/pp.105.076232 Ueno, 2008, Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri, Plant Cell Physiol., 49, 540, 10.1093/pcp/pcn026 Ueno, 2005, Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR, Planta, 221, 928, 10.1007/s00425-005-1491-y Verbruggen, 2009, Molecular mechanisms of metal hyperaccumulation in plants, New Phytol, 181, 759, 10.1111/j.1469-8137.2008.02748.x Verbruggen, 2013, Tolerance to cadmium in plants: the special case of hyperaccumulators, BioMetals, 26, 633, 10.1007/s10534-013-9659-6 Wong, 2009, HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana, New Phytol, 181, 71, 10.1111/j.1469-8137.2008.02638.x Zhao, 2006, Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri, New Phytol, 172, 646, 10.1111/j.1469-8137.2006.01867.x Zitka, 2013, Metal Transporter in Plants, In Heavy Metal Stress in Plants, 19, 10.1007/978-3-642-38469-1_2 Zlobin, 2021, Current understanding of plant zinc homeostasis regulation mechanisms, Plant Physiol. Biochem., 162, 327, 10.1016/j.plaphy.2021.03.003