HIF-1: Using Two Hands to Flip the Angiogenic Switch

Cancer and Metastasis Reviews - Tập 19 - Trang 59-65 - 2000
Gregg L. Semenza1
1Institute of Genetic Medicine, Departments of Pediatrics and Medicine, The Johns Hopkins University School of Medicine, Baltimore, USA

Tóm tắt

In brain, breast, and other common human tumors there is a correlation between expression of the transcriptional activator hypoxia-inducible factor 1 (HIF-1) and tumor grade and vascularization. HIF-1 stimulates angiogenesis by activating transcription of the gene encoding vascular endothelial growth factor (VEGF). HIF-1 is a heterodimer consisting of a constitutively-expressed HIF-1β subunit and an O2– and growth factor-regulated HIF-1α subunit. Recent studies have demonstrated that HIF-1α expression is increased in tumor relative to normal tissue by two mechanisms. First, decreased intratumoral O2 concentrations provide a physiological stimulus. Second, genetic alterations that activate oncogene products or inactivate tumor suppressor gene products increase HIF-1α expression and/or HIF-1 transcriptional activity independent of the O2 concentration. Taken together, these recent data suggest that increased HIF-1 activity provides a molecular basis for VEGF-induced angiogenesis and other adaptations of cancer cells to hypoxia that are critical for establishment of a primary tumor and its progression to the lethal phenotype.

Tài liệu tham khảo

Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57-70, 2000 Vogelstein B, Kinzler KW (eds): The Genetic Basis of Human Cancer, McGraw-Hill, New York, 1998 Yokota J: Tumor progression and metastasis. Carcinogenesis 21: 497-503, 2000 Fidler IJ, Ellis LM: The implication of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185-188, 1994 Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996 Kerbel RS: Tumor angiogenesis: past, present, and the near future. Carcinogenesis 21: 505-515, 2000 Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med 49: 407-424, 1998 Folkman J: Incipient angiogenesis. J Natl Cancer Inst 92: 94-95, 2000 Ferrara N: Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77: 527-543, 1999 Semenza GL: Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35: 71-103, 2000 Brown JM, Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58: 1408-1416, 1998 Vaupel P: Oxygen transport in tumors. Adv Exp Med Biol 388: 341-356, 1996 Yuan J, Glazer PM: Mutagenesis induced by the tumor microenvironment. Mutation Res 400: 439-446, 1998 Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56: 941-943, 1996 Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56: 4509-4515, 1996 Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359: 845-848, 1992 Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843-845, 1992 Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E: Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18: 3112-3119, 1998 Semenza GL: HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88: 1474-1480, 2000 Carmeliet P, Dor Y, Herbert J-M, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshet E: Role of HIF-1a in hypoxia-mediated apoptosis, cell proliferation, and tumour angiogenesis. Nature 394: 485-490, 1998 Ryan HE, Lo J, Johnson RS: HIF-1_ is required for solid tumor formation and embryonic vascularization. EMBO J 17: 3005-3015, 1998 Burger PC, Scheithauer BW: Tumors of the Central Nervous System, Armed Forces Institute of Pathology, Washington, 1993. Helmlinger G, Yuan F, Dellian M, Jain RK: Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med 3: 177-182, 1997 Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL: Expression of hypoxia-inducible factor 1α in human brain tumors: association with angiogenesis, invasion, and progression. Cancer 88: 2606-2618, 2000 Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, IsaacsWB, Semenza GL, Simons JW: Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59: 5830-5835, 1999 Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A: Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev 14: 34-44, 2000 Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of HIF-1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541-1545, 2000 Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: 391-396, 2000 Wizigmann-Voos S, Breier G, Risau W, Plate KH: Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res 55: 1358-1364, 1995 Kaelin Jr WG, Maher ER: TheVHLtumour-suppressor gene paradigm. Trends Genet 14: 423-426, 1998 Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95: 7987-7992, 1998 Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L: Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J Biol Chem 274: 6519-6525, 1999 Salceda S, Caro J: Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: its stabilization by hypoxia depends upon redox-induced changes. J Biol Chem 272: 22 642-22 647, 1997 Sutter CH, Laughner E, Semenza GL: HIF-1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97: 4748-4753, 2000 Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275, 1999 Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH: Hypoxia-inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem, 2000, (in press) Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323-331, 1997 Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 387: 296-299, 1997 Kubbutat MHG, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387: 299-303, 1997 Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88-91, 1996 An W, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM: Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392: 405-408, 1998 Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994 Van Meir EG, Polverini PJ, Chazin VR, Huang HJS, de Tribolet N, Cavenee WK: Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genet 8: 171-176, 1994 Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL: Reciprocal postive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res 59: 3915-3918, 1999 Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science 276: 1268-1272, 1997 Cantley LC, Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96: 4240-4245, 1999 Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J: Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94: 861-866, 1997 Mazure NM, Chen EY, Laderoute KR, Giaccia AJ: Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90: 3322-3331, 1997 Giri D, Ittmann M: Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. Hum Pathol 30: 419-424, 1999 Frame S, Balmain A: Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev 10: 106-113, 2000 Shields JM, Pruitt K, McFall A, Shaub A, Der CJ: Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol 10: 147-154, 2000 Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS: Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575-4580, 1995 Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J, Mansour SJ, Ahn NG, Kerbel RS: Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60: 490-498, 2000 Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J: p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriptional activity of HIF-1. J Biol Chem 274: 32 631-32 637, 1999 Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN: Combined activation of ras and akt in neural progenitors induces glioblastoma formation in mice. Nature Genet 25: 55-57, 2000 Penuel E, Martin GS: Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 10: 1693-1703, 1999 Jiang B-H, Agani F, Passaniti A, Semenza GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57: 5328-5335, 1997 Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ: Activating SRC mutation in a subset of advanced human colon cancers. Nature Genet 21: 187-190, 1999 Ellis LM, Staley CA, Liu W, Fleming RY, Parikh NU, Bucana CD, Gallick GE: Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem 273: 1052-1057, 1998 D'Amore PA, Shima DT: Tumor angiogenesis: a physiological process or genetically determined? Cancer Metast Rev 15: 205-212, 1996 Buolamwini JK: Novel anticancer drug discovery. Curr Opin Chem Biol 3: 500-509, 1999 Cardenas ME, Sanfridson A, Cutler NS, Heitman J: Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends Biotechnol 16: 427-433