HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry

Nature Metabolism - Tập 2 Số 12 - Trang 1391-1400
Congwen Wei1, Luming Wan1, Qiulin Yan1, Sheng Wang1, Jun Zhang1, Xiaopan Yang1, Yanhong Zhang1, Fan Chen2, Dongyu Li1, Yong‐Qiang Deng3, Jin Sun1, Jing Gong1, Xiaoli Yang4, Yufei Wang4, Xuejun Wang5, Jianmin Li1, Huan Yang1, Huilong Li1, Zhe Zhang1, Rong Wang1, Peng Du1, Yulong Zong6, Feng Yin6, Wanchuan Zhang7, Nan Wang7, Yumeng Peng1, Haotian Lin1, Jiangyue Feng1, Cheng‐Feng Qin3, Wei Chen1, Qi Gao8, Rui Zhang7, Yuan Cao2, Hui Zhong1
1Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
2Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, China
3State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
4Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA General Hospital, Beijing, China
5Beijing Institute of Radiation Medicine, AMMS, Beijing, China
6Department of Laboratory Medicine, Taian City Central Hospital Branch, Taian, China
7Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
8Beijing Hotgen Biotech Co., Ltd., Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

World Health Organization. Coronavirus Disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2020).

Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

Wang, H. et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18, 290–301 (2008).

Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

Shen, W. J., Asthana, S., Kraemer, F. B. & Azhar, S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J. Lipid Res. 59, 1114–1131 (2018).

Shen, W. J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).

Kolleck, I., Sinha, P. & Rustow, B. Vitamin E as an antioxidant of the lung: mechanisms of vitamin E delivery to alveolar type II cells. Am. J. Respir. Crit. Care Med. 166, S62–S66 (2002).

Kolleck, I. et al. HDL is the major source of vitamin E for type II pneumocytes. Free Radic. Biol. Med. 27, 882–890 (1999).

Catanese, M. T. et al. Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J. Virol. 84, 34–43 (2010).

Fantini, J., Di Scala, C., Baier, C. J. & Barrantes, F. J. Molecular mechanisms of protein–cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem. Phys. Lipids 199, 52–60 (2016).

Masson, D. et al. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler. Thromb. Vasc. Biol. 29, 2054–2060 (2009).

Raldua, D. & Babin, P. J. BLT-1, a specific inhibitor of the HDL receptor SR-BI, induces a copper-dependent phenotype during zebrafish development. Toxicol. Lett. 175, 1–7 (2007).

Sorci-Thomas, M. G. & Thomas, M. J. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler. Thromb. Vasc. Biol. 32, 2561–2565 (2012).

Bajimaya, S., Frankl, T., Hayashi, T. & Takimoto, T. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses. Virology 510, 234–241 (2017).

Osuna-Ramos, J. F., Reyes-Ruiz, J. M. & Del Angel, R. M. The role of host cholesterol during flavivirus infection. Front. Cell. Infect. Microbiol. 8, 388 (2018).

Dou, X. et al. Cholesterol of lipid rafts is a key determinant for entry and post-entry control of porcine rotavirus infection. BMC Vet. Res. 14, 45 (2018).

Li, G. M., Li, Y. G., Yamate, M., Li, S. M. & Ikuta, K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 9, 96–102 (2007).

Radenkovic, D., Chawla, S., Pirro, M., Sahebkar, A. & Banach, M. Cholesterol in relation to COVID-19: should we care about it? J. Clin. Med. 9, 1909 (2020).

Julovi, S. M. et al. Apolipoprotein A-II plus lipid emulsion enhance cell growth via SR-B1 and target pancreatic cancer in vitro and in vivo. PLoS ONE 11, e0151475 (2016).

Johnson, A. C. M., Yabu, J. M., Hanson, S., Shah, V. O. & Zager, R. A. Experimental glomerulopathy alters renal cortical cholesterol, SR-B1, ABCA1, and HMG CoA reductase expression. Am. J. Pathol. 162, 283–291 (2003).

Hardenberg, J. B. & Luft, F. C. Covid-19, ACE2 and the kidney. Acta Physiol. (Oxf.) 230, e13539 (2020).

Zhang, H. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int. J. Infect. Dis. 96, 19–24 (2020).

Liu, F. et al. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin. Gastroenterol. Hepatol. 18, 2128–2130 e2122 (2020).

Seah, I. & Agrawal, R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul. Immunol. Inflamm. 28, 391–395 (2020).

Hollstein, T. et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat. Metab. 2, 1021–1024 (2020).

Cheng, Y. et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 97, 829–838 (2020).

Zhang, C., Shi, L. & Wang, F. S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. Hepatol. 5, 428–430 (2020).

Zhang, H. et al. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 69, 1010–1018 (2020).

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J. & Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924 (2020).

Bajgain, K. T., Badal, S., Bajgain, B. B. & Santana, M. J. Prevalence of comorbidities among individuals with COVID-19: a rapid review of current literature. Am. J. Infect. Control https://doi.org/10.1016/j.ajic.2020.06.213 (2020).

Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513 (2020).

Ceriello, A. et al. Issues of cardiovascular risk management in people with diabetes in the COVID-19 era. Diabetes Care 43, 1427–1432 (2020).

Assmann, G. & Gotto, A. M. Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation 109, III8–III14 (2004).

Rashid, S. & Genest, J. Effect of obesity on high-density lipoprotein metabolism. Obes. (Silver Spring) 15, 2875–2888 (2007).

Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

Glowacka, I. et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 84, 1198–1205 (2010).

Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

Zhang, N. N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283.e1216 (2020).