HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS

Nature - Tập 447 Số 7146 - Trang 860-864 - 2007
Morten Petersen1, Zhiping Nie1, Yakup Batlevi2, Brett A. McCray1, Gillian P. Ritson1, Natalia B. Nedelsky1, Stephanie L. Schwartz1, Nicholas A. DiProspero3, Melanie A. Knight3, Oren Schuldiner4, Ranjani Padmanabhan5, Marc Hild5, Deborah L. Berry2, Dan Garza5, Charlotte Hubbert6, Tso-Pang Yao6, Eric H. Baehrecke2, J. Paul Taylor1
1Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
2Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
3Neurogenetics Branch, NINDS, NIH, Bethesda, Maryland 20817, USA,
4Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
5Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA.
6Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002)

Trojanowski, J. Q. & Lee, V. M. “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann. NY Acad. Sci. 924, 62–67 (2000)

Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006)

Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984)

Pickart, C. M. Back to the future with ubiquitin. Cell 116, 181–190 (2004)

Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005)

Rideout, H. J., Lang-Rollin, I. & Stefanis, L. Involvement of macroautophagy in the dissolution of neuronal inclusions. Int. J. Biochem. Cell Biol. 36, 2551–2562 (2004)

Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006)

Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006)

Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003)

Smyth, K. A. & Belote, J. M. The dominant temperature-sensitive lethal DTS7 of Drosophila melanogaster encodes an altered 20S proteasome β-type subunit. Genetics 151, 211–220 (1999)

Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003)

La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991)

Li, M. et al. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann. Neurol. 44, 249–254 (1998)

Takeyama, K. et al. Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35, 855–864 (2002)

Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001)

Neefjes, J. & Dantuma, N. P. Fluorescent probes for proteolysis: Tools for drug discovery. Nature Rev. Drug Discov. 3, 58–69 (2004)

Chan, H. Y., Warrick, J. M., Andriola, I., Merry, D. & Bonini, N. M. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum. Mol. Genet. 11, 2895–2904 (2002)

Taylor, J. P. et al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12, 749–757 (2003)

McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004)

Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004)

Harris, T. E. & Lawrence, J. C. TOR signaling. Sci. STKE 2003, re15 (2003)

Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005)

Taylor, J. P. et al. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev. 17, 1463–1468 (2003)