HAC robust trend comparisons among climate series with possible level shifts

Environmetrics - Tập 25 Số 7 - Trang 528-547 - 2014
Ross McKitrick1, Timothy J. Vogelsang2
1Department of Economics University of Guelph Guelph N1G 2W1 Canada
2Department of Economics Michigan State University Lansing MI U.S.A.

Tóm tắt

Comparisons of trends across climatic data sets are complicated by the presence of serial correlation and possible step‐changes in the mean. We build on heteroskedasticity and autocorrelation robust methods, specifically the Vogelsang–Franses (VF) nonparametric testing approach, to allow for a step‐change in the mean (level shift) at a known or unknown date. The VF method provides a powerful multivariate trend estimator robust to unknown serial correlation up to but not including unit roots. We show that the critical values change when the level shift occurs at a known or unknown date. We derive an asymptotic approximation that can be used to simulate critical values, and we outline a simple bootstrap procedure that generates valid critical values and p‐values. Our application builds on the literature comparing simulated and observed trends in the tropical lower troposphere and mid‐troposphere since 1958. The method identifies a shift in observations around 1977, coinciding with the Pacific Climate Shift. Allowing for a level shift causes apparently significant observed trends to become statistically insignificant. Model overestimation of warming is significant whether or not we account for a level shift, although null rejections are much stronger when the level shift is included. © 2014 The Authors. Environmetrics published by John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.2307/2938229

10.2307/2951764

10.2307/2951574

10.2307/2951753

10.1007/s00382‐009‐0680‐y

10.1007/BF00143250

10.1029/2005JD006548

Davidson R, 2004, Econometric Theory and Methods

Davies RB, 1987, Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrica, 74, 33

10.1002/joc.1651

10.1002/qj.49712152206

10.1175/1520-0442(2002)015<0117:TAOSRT>2.0.CO;2

10.1029/2011GL048101

10.1175/JCLI-D-12-00704.1

10.1017/S0266466610000496

10.1063/1.3060405

HaimbergerL.2005.Homogenization of radiosonde temperature time series using ERA‐40 analysis feedback information. ERA‐40 Project Report Series No. 23 June 2005. Available online athttp://www.ecmwf.int/publications/library/ecpublications/_pdf/era40/ERA40_PRS23.pdf.

10.1175/2008JCLI1929.1

10.2307/2171789

10.1029/1999JD900835

10.1146/annurev.energy.25.1.441

IPCC 2007

KarlTR HassolSJ MillerCD MurrayWL.2006.Temperature trends in the lower atmosphere: steps for understanding and reconciling differences.Synthesis and Assessment Product. Climate Change Science Program and the Subcommittee on Global Change Research.http://www.climatescience.gov/Library/sap/sap1‐1/finalreport/sap1‐1‐final‐all.pdf. Accessed August 3 2010.

10.1111/1468-0262.00366

10.1017/S0266466605050565

10.1111/1468-0262.00128

10.1198/016214501753209068

10.1175/JCLI4291.1

10.1002/asl.290

10.1007/s10584‐010‐9801‐1

10.2307/1913610

10.1016/0304-4076(94)01688-7

10.1088/1748‐9326/7/4/044018

10.4236/acs.2011.12004

10.1175/JAM2493.1

10.1126/science.1114867

10.1002/joc.1756

10.1029/2011JD016263

10.1017/S0266466610000617

10.1029/2003JD004414

10.1111/j.0012-9682.2008.00822.x

10.1038/nature06982

10.1029/2004JD005753

10.1029/2010JD015487

10.1029/2007GL030288

10.1017/S0266466600006289

10.1016/j.jeconom.2004.02.004

10.2307/1911465

10.1175/1520-0442(1993)006<0953:GWATPO>2.0.CO;2

Wooldridge J, 2005, Introductory Econometrics