H2S Prevents Cyclosporine A-Induced Vasomotor Alteration in Rats

Cardiovascular Toxicology - Tập 17 - Trang 287-296 - 2016
Na-na Ping1,2, Yan-ni Mi1, Dong-zheng Liu1, Sai Zhang1, Jing-guo Chen1, Yong-xiao Cao1
1Department of Pharmacology, Xi’an Jiaotong University College of Medicine, Xi’an, China
2Shaanxi Blood Center, Xi’an, China

Tóm tắt

Cyclosporine A (CsA) induces hypertension after transplantation. Hydrogen sulfide (H2S) was found to have hypotensive/vasoprotective effects in the cardiovascular system. The present study aims to investigate the role of H2S on CsA-induced vascular function disorder in rats. Rats were subcutaneously injected with CsA 25 mg/kg for 21 days. Blood pressure was measured by the tail-cuff method. Vasomotion was determined using a sensitive myograph. Western blotting and immunohistochemistry were used to quantify the protein expression of endothelin type A (ETA) receptor and essential MAPK pathway molecules. Vascular superoxide anion production and serum contents of malondialdehyde were determined. The results showed that sodium hydrosulfide (NaHS), a H2S donor, significantly attenuated the increase of blood pressure and contractile responses, and the upregulation of ETA receptor induced by CsA. In addition, NaHS could restore the CsA decreased acetylcholine-induced vasodilatation. Furthermore, NaHS blocked the CsA-induced elevation of reactive oxygen species level, extracellular signal-regulated kinase and p38 MAPK activities. In conclusion, H2S prevents CsA-induced vasomotor dysfunction. H2S attenuates CsA-induced ETA receptor upregulation, which may be associated with MAPK signal pathways. H2S ameliorates endothelial-dependent relaxation, which may be through antioxidant activity.

Tài liệu tham khảo

Kovarik, J. M., & Burtin, P. (2003). Immunosuppressants in advanced clinical development for organ transplantation and selected autoimmune diseases. Expert Opinion on Emerging Drugs, 8, 47–62. El-Mas, M. M., Helmy, M. W., Ali, R. M., & El-Gowelli, H. M. (2015). Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: Role of endothelin signaling. Toxicology and Applied Pharmacology, 284, 1–7. Cao, L., Cao, Y. X., Xu, C. B., & Edvinsson, L. (2013). Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries. PLoS One, 8, e73761. Li, J., Cao, Y. X., Liu, H., & Xu, C. B. (2007). Enhanced G-protein coupled receptors-mediated contraction and reduced endothelium-dependent relaxation in hypertension. European Journal of Pharmacology, 557, 186–194. Agapitov, A. V., & Haynes, W. G. (2002). Role of endothelin in cardiovascular disease. Journal of the Renin-Angiotensin-Aldosterone System, 3, 1–15. Ahnstedt, H., Stenman, E., Cao, L., Henriksson, M., & Edvinsson, L. (2012). Cytokines and growth factors modify the upregulation of contractile endothelin ET(A) and ET(B) receptors in rat cerebral arteries after organ culture. Acta Physiologica (Oxf), 205, 266–278. Takeda, Y., Miyamori, I., Yoneda, T., & Takeda, R. (1993). Increased concentration of endothelin messenger RNA in the mesenteric arteries of cyclosporine-induced hypertensive rats. American Journal of Hypertension, 6, 427–430. Cao, L., Xu, C. B., Zhang, Y., Cao, Y. X., & Edvinsson, L. (2011). Secondhand smoke exposure induces Raf/ERK/MAPK-mediated upregulation of cerebrovascular endothelin ETA receptors. BMC Neuroscience, 12, 109. Nishiyama, A., Kobori, H., Fukui, T., Zhang, G. X., Yao, L., Rahman, M., et al. (2003). Role of angiotensin II and reactive oxygen species in cyclosporine A-dependent hypertension. Hypertension, 42, 754–760. Ciarcia, R., Damiano, S., Florio, A., Spagnuolo, M., Zacchia, E., Squillacioti, C., et al. (2015). The protective effect of apocynin on cyclosporine A-induced hypertension and nephrotoxicity in rats. Journal of Cellular Biochemistry, 116, 1848–1856. Liu, Y. H., Lu, M., Hu, L. F., Wong, P. T., Webb, G. D., & Bian, J. S. (2012). Hydrogen sulfide in the mammalian cardiovascular system. Antioxidants and Redox Signaling, 17, 141–185. Olas, B. (2015). Hydrogen sulfide in signaling pathways. Clinica Chimica Acta, 439, 212–218. Kimura, H. (2015). Signaling molecules: Hydrogen sulfide and polysulfide. Antioxidants and Redox Signaling, 22, 362–376. Al-Magableh, M. R., Kemp-Harper, B. K., & Hart, J. L. (2015). Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 38, 13–20. Bianca, R. D. D., Mitidieri, E., Donnarumma, E., Tramontano, T., Brancaleone, V., Cirino, G., et al. (2015). Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide Biology Chemistry, 46, 80–86. Zhang, P., Li, F., Wiegman, C. H., Zhang, M., Hong, Y., Gong, J., et al. (2015). Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 52, 129–137. Li, X. H., Du, J. B., Bu, D. F., Tang, X. Y., & Tang, C. S. (2006). Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacologica Sinica, 27, 971–980. Rehman, H., Krishnasamy, Y., Haque, K., Thurman, R. G., Lemasters, J. J., Schnellmann, R. G., et al. (2014). Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One, 8, e65029. Ping, N. N., Cao, L., Xiao, X., Li, S., & Cao, Y. X. (2014). The determination of optimal initial tension in rat coronary artery using wire myography. Physiological Research/Academia Scientiarum Bohemoslovaca, 63, 143–146. Cao, L., Zhang, Y., Cao, Y. X., Edvinsson, L., & Xu, C. B. (2012). Cigarette smoke upregulates rat coronary artery endothelin receptors in vivo. PLoS One, 7, e33008. He, X., Zhao, M., Bi, X. Y., Yu, X. J., & Zang, W. J. (2013). Delayed preconditioning prevents ischemia/reperfusion-induced endothelial injury in rats: Role of ROS and eNOS. Laboratory Investigation, 93, 168–180. Virdis, A., Colucci, R., Versari, D., Ghisu, N., Fornai, M., Antonioli, L., et al. (2009). Atorvastatin prevents endothelial dysfunction in mesenteric arteries from spontaneously hypertensive rats: Role of cyclooxygenase 2-derived contracting prostanoids. Hypertension, 53, 1008–1016. Hansen-Schwartz, J., & Edvinsson, L. (2000). Increased sensitivity to ET-1 in rat cerebral arteries following organ culture. NeuroReport, 11, 649–652. Roullet, J. B., Xue, H., McCarron, D. A., Holcomb, S., & Bennett, W. M. (1994). Vascular mechanisms of cyclosporin-induced hypertension in the rat. Journal of Clinical Investigation, 93, 2244–2250. Cheng, Y., Ndisang, J. F., Tang, G., Cao, K., & Wang, R. (2004). Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American Journal of Physiology Heart and Circulatory Physiology, 287, H2316–H2323. Yan, H., Du, J. B., & Tang, C. S. (2004). The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochemical and Biophysical Research Communications, 313, 22–27. Al-Magableh, M. R., Kemp-Harper, B. K., & Hart, J. L. (2015). Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertension Research, 38, 13–20. Yang, G., & Wang, R. (2015). H2S and blood vessels: An overview. Handbook of Experimental Pharmacology, 230, 85–110. Fleming I (2016) The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. Vascular Pharmacology. Feletou, M., & Vanhoutte, P. M. (2009). EDHF: An update. Clinical Science (Lond), 117, 139–155. Cauduro, R. L., Costa, C., Lhulier, F., Garcia, R. G., Cabral, R. D., Goncalves, L. F. S., et al. (2005). Endothelin-1 plasma levels and hypertension in cyclosporine-treated renal transplant patients. Clinical Transplants, 19, 470–474. Bartholomeusz, B., Hardy, K. J., Nelson, A. S., & Phillips, P. A. (1996). Bosentan ameliorates cyclosporin A-induced hypertension in rats and primates. Hypertension, 27, 1341–1345. Zheng, J. P., Zhang, X., Wang, H., Wang, Y., Cheng, Z., Yin, P., et al. (2013). Vasomotor dysfunction in the mesenteric artery after organ culture with cyclosporin A. Basic and Clinical Pharmacology and Toxicology, 113, 370–376. Cao, L., Zhang, Y. P., Cao, Y. X., Edvinsson, L., & Xu, C. B. (2012). Cigarette smoke upregulates rat coronary artery endothelin receptors in vivo. PLoS One, 7, e33008. Zheng, J. P., Cheng, Z., Jiang, J., Ke, Y., & Liu, Z. (2015). Cyclosporin A upregulates ETB receptor in vascular smooth muscle via activation of mitogen-activating protein kinases and NF-kappaB pathways. Toxicology Letters, 235, 1–7. Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., et al. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Scientific Reports, 5, 11162. Al-Magableh, M. R., Kemp-Harper, B. K., Ng, H. H., Miller, A. A., & Hart, J. L. (2014). Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. Naunyn-Schmiedebergs Archives of Pharmacology, 387, 67–74.