H10Nx avian influenza viruses detected in wild birds in China pose potential threat to mammals

One Health - Tập 16 - Trang 100515 - 2023
Xinru Lv1, Jingman Tian2, Xiang Li1, Xiaoli Bai2, Yi Li1, Minghui Li2, Qing An1, Xingdong Song1, Yu Xu3, Heting Sun3, Peng Peng3, Siyuan Qin3, Zhenliang Zhao1, Rongxiu Qin1, Qiuzi Xu1, Fengyi Qu1, Meixi Wang1, Hua Luo1, Zhen Zhang1, Xiangwei Zeng1
1College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
2State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin 150069, China
3Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China

Tài liệu tham khảo

Feldmann, 1988, The structure of serotype H10 hemagglutinin of influenza A virus: comparison of an apathogenic avian and a mammalian strain pathogenic for mink [J], Virology, 165, 428, 10.1016/0042-6822(88)90586-7 Englund, 1998, Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison) [J], Arch. Virol., 143, 653, 10.1007/s007050050321 Everest, 2021, The emergence and zoonotic transmission of H10Nx avian influenza virus infections [J], mBio, 12, 10.1128/mBio.01785-21 Klingeborn, 1985, An avian influenza A virus killing a mammalian species--the mink. Brief report [J], Arch. Virol., 86, 347, 10.1007/BF01309839 Englund, 2000, Studies on influenza viruses H10N4 and H10N7 of avian origin in mink [J], Vet. Microbiol., 74, 101, 10.1016/S0378-1135(00)00170-X Wang, 2012, Complete genome sequence of an H10N5 avian influenza virus isolated from pigs in central China [J], J. Virol., 86, 13865, 10.1128/JVI.02687-12 Krog, 2015, Influenza A(H10N7) virus in dead harbor seals, Denmark [J], Emerg. Infect. Dis., 21, 684, 10.3201/eid2104.141484 Zohari, 2014, Avian influenza A(H10N7) virus involvement in mass mortality of harbour seals (Phoca vitulina) in Sweden, March through October 2014 [J], Euro. Surveill., 19 Bodewes, 2015, Avian Influenza A(H10N7) virus-associated mass deaths among harbor seals [J], Emerg. Infect. Dis., 21, 720, 10.3201/eid2104.141675 Pan American Health Organization 2004 Arzey, 2012, Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia [J], Emerg. Infect. Dis., 18, 814, 10.3201/eid1805.111852 Chen, 2014, Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study [J], Lancet, 383, 714, 10.1016/S0140-6736(14)60111-2 Qi, 2014, Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China [J], Euro. Surveill., 19, 10.2807/1560-7917.ES2014.19.25.20841 Qi, 2022, Human Infection with an Avian-Origin Influenza A (H10N3) Virus [J], N. Engl. J. Med., 386, 1087, 10.1056/NEJMc2112416 Y. Wang, S. Niu, B. Zhang, et al., The whole genome analysis for the first human infection with H10N3 influenza virus in China [J], J. Inf. Secur. S0163-4453(2021)00318-2. Webster, 1992, Evolution and ecology of influenza A viruses [J], Microbiol. Rev., 56, 152, 10.1128/mr.56.1.152-179.1992 Rohm, 1996, Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes [J], Virology, 217, 508, 10.1006/viro.1996.0145 Fouchier, 2005, Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls [J], J. Virol., 79, 2814, 10.1128/JVI.79.5.2814-2822.2005 Buyanravjikh, 2021, [Corrigendum] Cryptotanshinone inhibits IgEmediated degranulation through inhibition of spleen tyrosine kinase and tyrosineprotein kinase phosphorylation in mast cells [J], Mol. Med. Rep., 24, 10.3892/mmr.2021.12283 Tavares, 2008, Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds [J], BMC Evol. Biol., 8, 81, 10.1186/1471-2148-8-81 Lee, 2010, Application of DNA barcoding technique in avian influenza virus surveillance of wild bird habitats in Korea and Mongolia [J], Avian Dis., 54, 677, 10.1637/8783-040109-ResNote.1 Chai, 2012 Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J], Mol. Biol. Evol., 30, 772, 10.1093/molbev/mst010 Zhang, 2020, PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J], Mol. Ecol. Resour., 20, 348, 10.1111/1755-0998.13096 Drummond, 2007, BEAST: Bayesian evolutionary analysis by sampling trees [J], BMC Evol. Biol., 7, 214, 10.1186/1471-2148-7-214 Kalyaanamoorthy, 2017, ModelFinder: fast model selection for accurate phylogenetic estimates [J], Nat. Methods, 14, 587, 10.1038/nmeth.4285 Drummond, 2006, Relaxed phylogenetics and dating with confidence [J], PLoS Biol., 4, 10.1371/journal.pbio.0040088 Suchard, 2018, Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 [J], Virus Evol., 4, vey016, 10.1093/ve/vey016 Chai, 2022, Emergence, evolution, and pathogenicity of influenza A(H7N4) virus in shorebirds in China [J], J. Virol., 96, 10.1128/JVI.01717-21 Baele, 2012, Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty [J], Mol. Biol. Evol., 29, 2157, 10.1093/molbev/mss084 Rambaut, 2018, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 [J], Syst. Biol., 67, 901, 10.1093/sysbio/syy032 Bielejec, 2016, SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes [J], Mol. Biol. Evol., 33, 2167, 10.1093/molbev/msw082 Li, 2014, Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses [J], PLoS Pathog., 10, 10.1371/journal.ppat.1004508 Zhang, 2013, H7N9 influenza viruses are transmissible in ferrets by respiratory droplet [J], Science, 341, 410, 10.1126/science.1240532 Ma, 2015, Emergence and evolution of H10 subtype influenza viruses in poultry in China [J], J. Virol., 89, 3534, 10.1128/JVI.03167-14 Schneider, 2017, A portrait of the sialyl glycan receptor specificity of the H10 influenza virus hemagglutinin-A picture of an avian virus on the verge of becoming a pandemic? [J], Vaccines (Basel), 5(4) Gao, 2019, Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-beta induction in human cells [J], J. Gen. Virol., 100, 1273, 10.1099/jgv.0.001294 Subbarao, 1993, A single amino acid in the PB2 gene of influenza A virus is a determinant of host range [J], J. Virol., 67, 1761, 10.1128/jvi.67.4.1761-1764.1993 Li, 2005, Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model [J], J. Virol., 79, 12058, 10.1128/JVI.79.18.12058-12064.2005 Fan, 2009, Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice [J], Virology, 384, 28, 10.1016/j.virol.2008.11.044 Nao, 2015, A single amino acid in the M1 protein responsible for the different pathogenic potentials of H5N1 highly pathogenic avian influenza virus strains [J], PLoS One, 10, 10.1371/journal.pone.0137989 Jiao, 2008, A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice [J], J. Virol., 82, 1146, 10.1128/JVI.01698-07 Kuo, 2009, Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells [J], J. Virol., 83, 1611, 10.1128/JVI.01491-08 Baigent, 2003, Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission [J], Bioessays, 25, 657, 10.1002/bies.10303 Liu, 2022, Emergence of a novel reassortant avian influenza virus (H10N3) in Eastern China with high pathogenicity and respiratory droplet transmissibility to mammals [J], Sci. China Life Sci., 65, 1024, 10.1007/s11427-020-1981-5 To, 2014, Emergence in China of human disease due to avian influenza A(H10N8)--cause for concern? [J], J. Inf. Secur., 68, 205 Wang, 2022, Emergence, evolution, and biological characteristics of H10N4 and H10N8 avian influenza viruses in migratory wild birds detected in Eastern China in 2020 [J], Microbiol. Spectr., 10, 10.1128/spectrum.00807-22 Abolnik, 2010, Phylogenetic analysis of influenza A viruses (H6N8, H1N8, H4N2, H9N2, H10N7) isolated from wild birds, ducks, and ostriches in South Africa from 2007 to 2009 [J], Avian Dis., 54, 313, 10.1637/8781-040109-Reg.1 Vijaykrishna, 2013, The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses [J], J. Virol., 87, 10182, 10.1128/JVI.03437-12 Suttie, 2019, Avian influenza in the Greater Mekong Subregion, 2003-2018 [J], Infect. Genet. Evol., 74, 10.1016/j.meegid.2019.103920 Tang, 2020, Characterization of Avian Influenza Virus H10-H12 Subtypes Isolated from Wild Birds in Shanghai, China from 2016 to 2019 [J], Viruses, 12, 10.3390/v12101085