H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Banach, S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3, 1922, 133–181.
Banda, M. K., Herty, M. and Klar, A., Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1, 2006, 295–314.
Banda, M. K., Herty, M. and Klar, A., Gas flow in pipeline networks, Netw. Heterog. Media, 1, 2006, 41–56.
Bedjaoui, N., Weyer, E. and Bastin, G., Methods for the localization of a leak in open water channels, Netw. Heterog. Media, 4, 2009, 189–210.
Bressan, A., Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications, Vol. 20, Oxford University Press, Oxford, 2003.
Colombo, R. M., Guerra, G., Herty, M. and Schleper, V., Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48, 2009, 2032–2050.
Coron, J. M., Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, American Mathematical Society, Providence, RI, 2007.
Coron, J. M., d’Andréa-Novel, B. and Bastin, G., A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52, 2007, 2–11.
Coron, J. M., d’Andréa-Novel, B. and Bastin, G., Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., 47, 2008, 1460–1498.
Dick, M., Gugat, M. and Leugering, G., Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5, 2010, 691–709.
Dick, M., Gugat, M. and Leugering, G, A strict H 1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction, Numer. Algebra Control Optim., 1, 2011, 225–244.
Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, Berkley, 2010.
Greenberg, J. M. and Li, T. T., The effect of boundary damping for the quasilinear wave equation, J. Differential Equations, 52, 1984, 66–75.
Gugat, M., Optimal nodal control of networked hyperbolic systems: evaluation of derivatives, Adv. Model Optim., 7, 2005, 9–37.
Gugat, M., Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27, 2010, 189–203.
Gugat, M. and Dick, M., Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, Math. Control Relat. Fields, 1, 2011, 469–491.
Gugat, M., Dick, M. and Leugering, G., Gas flow in fan-shaped networks: classical solutions and feedback stabilization, SIAM J. Control Optim., 49, 2011, 2101–2117.
Gugat, M. and Herty, M., Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17, 2011, 28–51.
Gugat, M., Herty, M., Klar, A., et al., Well-posedness of networked hyperbolic systems of balance laws, Internat. Ser. Numer. Math., 160, 2012, 123–146.
Gugat, M., Herty, M. and Schleper, V., Flow control in gas networks: exact controllability to a given demand, Math. Methods Appl. Sci., 34, 2011, 745–757.
Gugat, M., Leugering, G., Tamasoiu, S. and Wang, K., Boundary feedback stabilization for second-order quasilinear hyperbolic systems: a strict H 2-Lyapunov function, submitted.
Jeffrey, A., Quasilinear hyperbolic systems and waves, Reasearch Notes in Mathematics, Pitman Publishing, London, 1976.
Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58, 1975, 181–205.
Li, T. T., Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Vol. 32, Masson and Wiley, Paris, Milan, Barcelona, 1994.
Li, T. T., Controllability and Observability for Quasilinear Hyperbolic Systems, American Institute of Mathematical Sciences, Springfield, MO, 2010.
Osiadacz, A. and Chaczykowski, M., Comparison of isothermal and non-isothermal transient models, Technical Report Available at Warsaw University of Technology, Pipeline Simulation Interest Group, Denver, Colorado, 1998.
Osiadacz, A. and Chaczykowski, M., Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81, 2001, 41–51.
Qin, T., Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems, Chin. Ann. Math., 6B(3), 1985, 289–298.
Slemrod, M., Boundary feedback stabilization for a quasilinear wave equation, Control Theory for Distributed Parameter Systems, Lecture Notes in Control and Information Sciences, 54, 1983, 221–237.
Taylor, M., Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
Tucsnak, M. and Weiss, G., Observation and Control for Operator Semigroups, Birkhäuser, Basel-Boston-Berlin, 2009.
Vazquez, R., Coron, J. M., Krstic, M. and Bastin, G., Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, CDC-ECC, 2011, 1329–1334.