Sự điều tiết của vi sinh vật đường ruột đối với P-glycoprotein trong biểu mô ruột để duy trì sự ổn định sinh lý

Microbiome - Tập 9 Số 1 - 2021
Sage E. Foley1, Christine Tuohy2, Merran Dunford3, Michael J. Grey4, Heidi De Luca4, Caitlin Cawley1, Rose L. Szabady5, Ana Maldonado‐Contreras1, Jean Marie Houghton6, Doyle V. Ward1, Randall J. Mrsny3, Beth A. McCormick1
1Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
2Graduate School of Nursing, University of Massachusetts Medical School, Worcester, USA
3Department of Pharmacy & Pharmacology; University of Bath; Bath BA2 7AY UK
4Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
5Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
6Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA

Tóm tắt

Tóm tắtĐặt vấn đềP-glycoprotein (P-gp) đóng vai trò quan trọng trong việc bảo vệ biểu mô ruột thông qua khả năng trung gian sự thoát ra của thuốc/chất ngoại lai từ niêm mạc ruột vào lòng ruột. Các nghiên cứu gần đây chỉ ra rằng P-gp cũng là cầu nối quan trọng trong giao tiếp giữa chức năng hàng rào niêm mạc ruột và hệ thống miễn dịch bẩm sinh. Tuy nhiên, mặc dù đã có hiểu biết trong hơn 10 năm về vai trò trung tâm của P-gp trong cân bằng sinh lý đường tiêu hóa, cơ chế phân tử chính xác điều khiển sự biểu hiện và điều hòa chức năng của nó vẫn chưa được làm rõ. Trong nghiên cứu này, chúng tôi đã đánh giá cách mà hệ vi sinh vật đường ruột thúc đẩy sự biểu hiện và chức năng của P-gp.Kết quảChúng tôi đã xác định được một “cốt lõi chức năng” của vi sinh vật trong cộng đồng ruột, cụ thể là các chi trong các lớp ClostridiaBacilli, là cần thiết và đủ để kích thích sự biểu hiện của P-gp trong biểu mô ruột trong các mô hình chuột. Phân tích metagenomic của cộng đồng vi sinh vật này cho thấy rằng sự sản xuất axit béo chuỗi ngắn và axit mật thứ cấp có liên quan tích cực đến sự biểu hiện của P-gp. Chúng tôi cũng đã chỉ ra rằng hai loại chuyển hoá từ vi sinh vật này có tác dụng hiệp đồng làm tăng cường sự biểu hiện và chức năng của P-gp cả trong ống nghiệm và trong cơ thể sống. Hơn nữa, trong các bệnh nhân mắc bệnh viêm loét đại tràng (UC), chúng tôi phát hiện sự biểu hiện của P-gp giảm đi kèm với sự giảm của các endocannabinoids chống viêm nguồn gốc từ biểu mô và nội dung lòng ruột (ví dụ: vi khuẩn hoặc các chuyển hoá của chúng) với khả năng giảm để kích thích biểu hiện P-gp.

Từ khóa

#P-glycoprotein #vi sinh vật đường ruột #biểu mô ruột #cân bằng sinh lý #viêm niêm mạc

Tài liệu tham khảo

Pazos M, Siccardi D, Mumy KL, Bien JD, Louie S, Shi HN, et al. Multidrug resistance-associated transporter 2 regulates mucosal inflammation by facilitating the synthesis of hepoxilin A3. J Immunol. 2008;181(11):8044–52. https://doi.org/10.4049/jimmunol.181.11.8044.

Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C, et al. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Invest. 2018;128(9):4044–56. https://doi.org/10.1172/JCI96817.

Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Devel. 1996;6(5):610–7. https://doi.org/10.1016/S0959-437X(96)80091-8.

Brinar M, Cukovic-Cavka S, Bozina N, Ravic KG, Markos P, Ladic A, et al. MDR1 polymorphisms are associated with inflammatory bowel disease in a cohort of Croatian IBD patients. BMC Gastroenterol. 2013;13(1). https://doi.org/10.1186/1471-230X-13-57.

Brant SR, Panhuysen CI, Nicolae D, Reddy DM, Bonen DK, Karaliukas R, et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet. 2003;73(6):1282–92. https://doi.org/10.1086/379927.

Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 1998;161:5733–44.

Wilk JN, Bilsborough J, Viney JL. The mdr1a-/- mouse model of spontaneous colitis. Immunol Res. 2005;31(2):151–9. https://doi.org/10.1385/IR:31:2:151.

Resta-Lenert S, Smitham J, Barrett KE. Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a-/- mice. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G153–62. https://doi.org/10.1152/ajpgi.00395.2004.

Blokzijl H, Vander Borght S, Bok LI, Libbrecht L, Geuken M, van den Heuvel FA, et al. Decreased P-glycoprotein (P-gp/MDR1) expression in inflamed human intestinal epithelium is independent of PXR protein levels. Inflamm Bowel Dis. 2007;13(6):710–20. https://doi.org/10.1002/ibd.20088.

Iizasa H, Genda N, Kitano T, Tomita M, Nishihara K, Hayashi M, et al. Altered expression and function of P-glycoprotein in dextran sodium sulfate-induced colitis in mice. J Pharm Sci. 2003;92(3):569–76. https://doi.org/10.1002/jps.10326.

Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18(1):2. https://doi.org/10.1186/s12865-016-0187-3.

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41. https://doi.org/10.1016/j.cell.2014.03.011.

Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. https://doi.org/10.1073/pnas.0706625104.

Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–83. https://doi.org/10.1136/gutjnl-2013-304833.

Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62. https://doi.org/10.1038/s41586-019-1237-9.

Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 2020;27(4):659–70 e655. https://doi.org/10.1016/j.chom.2020.01.021.

Mercado-Lubo R, Zhang Y, Zhao L, Rossi K, Wu X, Zou Y, et al. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun. 2016;7(1):12225. https://doi.org/10.1038/ncomms12225.

Bernstein CN, Wajda A, Svenson LW, MacKenzie A, Koehoorn M, Jackson M, et al. The epidemiology of inflammatory bowel disease in Canada: a population-based study. Am J Gastroenterol. 2006;101(7):1559–68. https://doi.org/10.1111/j.1572-0241.2006.00603.x.

Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785–94. https://doi.org/10.1053/j.gastro.2011.01.055.

Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17. https://doi.org/10.1053/j.gastro.2004.01.063.

Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3(2):148–58. https://doi.org/10.1038/mi.2009.132.

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. https://doi.org/10.1126/science.1241214.

Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80. https://doi.org/10.1016/j.cell.2012.07.008.

Roy U, Galvez EJC, Iljazovic A, Lesker TR, Blazejewski AJ, Pils MC, et al. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep. 2017;21(4):994–1008. https://doi.org/10.1016/j.celrep.2017.09.097.

Cao W, Kayama H, Chen ML, Delmas A, Sun A, Kim SY, et al. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids. Immunity. 2017;47(6):1182–1196 e1110. https://doi.org/10.1016/j.immuni.2017.11.012.

Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One. 2011;6(3):e17996. https://doi.org/10.1371/journal.pone.0017996.

Feller N, Kuiper CM, Lankelma J, Ruhdal JK, Scheper RJ, Pinedo HM, et al. Functional detection of MDR1/P170 and MRP/P190-mediated mutidrug resistance in tumour cells by flow cytometry. Br J Cancer. 1995;72(3):543–9. https://doi.org/10.1038/bjc.1995.371.

Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V, et al. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio. 2019;10:e00632–19.

Saksena S, Goyal S, Raheja G, Singh V, Akhtar M, Nazir TM, et al. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300(6):G1115–23. https://doi.org/10.1152/ajpgi.00027.2011.

Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336(6086):1325–9. https://doi.org/10.1126/science.1222195.

Ward JBJ, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ni Gabhann J, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol. 2017;312(6):G550–8. https://doi.org/10.1152/ajpgi.00256.2016.

Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576(7785):143–8. https://doi.org/10.1038/s41586-019-1785-z.

Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50. https://doi.org/10.1038/nature12721.

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73. https://doi.org/10.1126/science.1241165.

Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71. https://doi.org/10.1016/j.chom.2015.03.005.

Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, et al. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J Biol Chem. 1989;264(30):18031–40. https://doi.org/10.1016/S0021-9258(19)84675-6.

Morrow CS, Nakagawa M, Goldsmith ME, Madden MJ, Cowan KH. Reversible transcriptional activation of mdr1 by sodium butyrate treatment of human colon cancer cells. J Biol Chem. 1994;269(14):10739–46. https://doi.org/10.1016/S0021-9258(17)34121-2.

Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, Jurickova I, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun. 2019;10(1):38. https://doi.org/10.1038/s41467-018-07841-3.

Ryan FJ, Ahern AM, Fitzgerald RS, Laserna-Mendieta EJ, Power EM, Clooney AG, et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun. 2020;11(1):1512. https://doi.org/10.1038/s41467-020-15342-5.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19. https://doi.org/10.1111/j.1365-2036.2007.03562.x.

Alhouayek M, Lambert DM, Delzenne NM, Cani PD, Muccioli GG. Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB J. 2011;25(8):2711–21. https://doi.org/10.1096/fj.10-176602.

Wang J, Zhang X, Yang C, Zhao S. Effect of monoacylglycerol lipase inhibition on intestinal permeability in chronic stress model. Biochem Biophys Res Commun. 2020;525(4):962–7.

Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe. 2018;24(2):296–307 e297. https://doi.org/10.1016/j.chom.2018.07.002.

Pickard JM, Nunez G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am J Pathol. 2019;189(7):1300–10. https://doi.org/10.1016/j.ajpath.2019.03.003.

Siccardi D, Mumy KL, Wall DM, Bien JD, McCormick BA. Salmonella enterica serovar Typhimurium modulates P-glycoprotein in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol. 2008;294(6):G1392–400. https://doi.org/10.1152/ajpgi.00599.2007.

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59. https://doi.org/10.1194/jlr.R500013-JLR200.

Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol. 2015;11(9):685–90. https://doi.org/10.1038/nchembio.1864.

Jin S, Scotto KW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol. 1998;18(7):4377–84. https://doi.org/10.1128/MCB.18.7.4377.

Sekhavat A, Sun JM, Davie JR. Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem Cell Biol. 2007;85(6):751–8. https://doi.org/10.1139/O07-145.

Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69(7):2826–32. https://doi.org/10.1158/0008-5472.CAN-08-4466.

Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39. https://doi.org/10.1016/j.immuni.2013.12.007.

Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396–406 e391-310.

Yaku K, Enami Y, Kurajyo C, Matsui-Yuasa I, Konishi Y, Kojima-Yuasa A. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53. Mol Cell Biochem. 2012;370(1-2):7–14. https://doi.org/10.1007/s11010-012-1392-x.

Carazo A, Hyrsova L, Dusek J, Chodounska H, Horvatova A, Berka K, et al. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor. Toxicol Lett. 2017;265:86–96. https://doi.org/10.1016/j.toxlet.2016.11.013.

Jing W, Safarpour Y, Zhang T, Guo P, Chen G, Wu X, et al. Berberine upregulates P-glycoprotein in human Caco-2 cells and in an experimental model of colitis in the rat via activation of Nrf2-dependent mechanisms. J Pharmacol Exp Ther. 2018;366(2):332–40. https://doi.org/10.1124/jpet.118.249615.

Wang X, Campos CR, Peart JC, Smith LK, Boni JL, Cannon RE, et al. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J Neurosci. 2014;34(25):8585–93. https://doi.org/10.1523/JNEUROSCI.2935-13.2014.

Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol. 2007;292(4):G1114–22. https://doi.org/10.1152/ajpgi.00528.2006.

Katayama K, Noguchi K, Sugimoto Y. Regulations of P-Glycoprotein/ABCB1/MDR1in Human Cancer Cells. N J Sci. 2014;2014:1–10. https://doi.org/10.1155/2014/476974.

Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184(3):615–627 e617. https://doi.org/10.1016/j.cell.2020.12.011.

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353 e1321. https://doi.org/10.1016/j.cell.2016.10.043.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe. 2017;23(1):41–53.