Gut Metagenomic Profiling of Gossypol Induced Oxycarenus laetus (Hemiptera: Lygaeidae) Reveals Gossypol Tolerating Bacterial Species

Springer Science and Business Media LLC - Tập 62 Số 1 - Trang 54-60 - 2022
Shruthi Chalil Sureshan1, Habeeb Shaik Mohideen1, Tejas Shaji Nair1
1Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603203, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9:1–9. https://doi.org/10.3389/fphys.2018.00364

Cui S, Wang L, Ma L, Geng X (2016) P450-mediated detoxification of botanicals in insects. Phytoparasitica 44:585–599. https://doi.org/10.1007/s12600-016-0550-1

Wu C, Chakrabarty S, Jin M et al (2019) Insect ATP-binding cassette (ABC) transporters: Roles in xenobiotic detoxification and Bt insecticidal activity. Int J Mol Sci 20:12–14. https://doi.org/10.3390/ijms20112829

Berasategui A, Salem H, Paetz C et al (2017) Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol 26:4099–4110. https://doi.org/10.1111/mec.14186

Zhang S, Shu J, Xue H et al (2020) The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 5:1–17. https://doi.org/10.1128/msystems.00692-19

Iqbal J, Bhutta SA, Alqarni AS et al (2018) Seasonal population dynamics of dusky cotton bug (Oxycarenus spp.) in transgenic cotton varieties under field conditions. Saudi J Biol Sci 25:1122–1127. https://doi.org/10.1016/j.sjbs.2017.05.004

Krempl C, Sporer T, Reichelt M et al (2016) Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochem Mol Biol 71:49–57. https://doi.org/10.1016/j.ibmb.2016.02.005

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 21 Dec 2018

Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016:1–22. https://doi.org/10.7717/peerj.2584

DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Priya NG, Ojha A, Kajla MK et al (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0030768

Klammsteiner T, Walter A, Bogataj T et al (2020) The core gut microbiome of black soldier fly (Hermetia illucens) larvae raised on low-bioburden diets. Front Microbiol 11:1–14. https://doi.org/10.3389/fmicb.2020.00993

Shinde AA, Shaikh FK, Gadge PP et al (2019) Conserved nature of Helicoverpa armigera gut bacterial flora on different host plants and in vitro interactions with PI proteins advocates role in host digestive physiology. J Saudi Soc Agric Sci 18:141–149. https://doi.org/10.1016/j.jssas.2017.03.004

Schmid RB, Lehman RM, Brözel VS, Lundgren JG (2014) An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera : Carabidae). Florida Entomol 97:575–584. https://doi.org/10.1653/024.097.0232

Saurav GK, Daimei G, Rana VS et al (2016) Detection and localization of Wolbachia in Thrips palmi Karny (Thysanoptera: Thripidae). Indian J Microbiol 56:167–171. https://doi.org/10.1007/s12088-016-0567-7

Hosokawa T, Koga R, Kikuchi Y et al (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774. https://doi.org/10.1073/pnas.0911476107

Risa A, Krifaton C, Kukolya J et al (2018) Aflatoxin B1 and zearalenone-detoxifying profile of Rhodococcus type strains. Curr Microbiol 75:907–917. https://doi.org/10.1007/s00284-018-1465-5

Pan L, Gu JG, Yin B, Cheng SP (2009) Contribution to deterioration of polymeric materials by a slow-growing bacterium Nocardia corynebacterioides. Int Biodeterior Biodegrad 63:24–29. https://doi.org/10.1016/j.ibiod.2008.06.003

Bayat Z, Hassanshahian M, Cappello S (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: A mini review. Open Microbiol J 9:48–54. https://doi.org/10.2174/1874285801509010048

Ozdal M, Ozdal OG, Algur OF (2016) Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish J Microbiol 65:63–68. https://doi.org/10.5604/17331331.1197325