Guiding spatial attention by multimodal reward cues

Attention, Perception, & Psychophysics - Tập 84 - Trang 655-670 - 2021
Vincent Hoofs1, Ivan Grahek1,2, C. Nico Boehler1, Ruth M. Krebs1
1Department of Experimental Psychology, Ghent University, Ghent, Belgium
2Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, USA

Tóm tắt

Our attention is constantly captured and guided by visual and/or auditory inputs. One key contributor to selecting relevant information from the environment is reward prospect. Intriguingly, while both multimodal signal processing and reward effects on attention have been widely studied, research on multimodal reward signals is lacking. Here, we investigated this using a Posner task featuring peripheral cues of different modalities (audiovisual/visual/auditory), reward prospect (reward/no-reward), and cue-target stimulus-onset asynchronies (SOAs 100–1,300 ms). We found that audiovisual and visual reward cues (but not auditory ones) enhanced cue-validity effects, albeit with different time courses (Experiment 1). While the reward-modulated validity effect of visual cues was pronounced at short SOAs, the effect of audiovisual reward cues emerged at longer SOAs. Follow-up experiments exploring the effects of visual (Experiment 2) and auditory (Experiment 3) reward cues in isolation showed that reward modulated performance only in the visual condition. This suggests that the differential effect of visual and auditory reward cues in Experiment 1 is not merely a result of the mixed cue context, but confirms that visual reward cues have a stronger impact on attentional guidance in this paradigm. Taken together, it seems that adding an auditory reward cue to the inherently dominant visual one led to a shift/extension of the validity effect in time – instead of increasing its amplitude. While generally being in line with a multimodal cuing benefit, this specific pattern highlights that different reward signals are not simply combined in a linear fashion but lead to a qualitatively different process.

Tài liệu tham khảo

Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1-16. https://doi.org/10.1167/13.3.7 Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369(1), 24–39. https://doi.org/10.1111/nyas.12957 Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10367. https://doi.org/10.1073/PNAS.1104047108 Armellino, D., Hussain, E., Schilling, M. E., Senicola, W., Eichorn, A., Dlugacz, Y., & Farber, B. F. (2012). Using high-technology to enforce low-technology safety measures: The use of third-party remote video auditing and real-time feedback in healthcare. Clinical Infectious Diseases, 54(1), 1-7. https://doi.org/10.1093/cid/cir773 Armellino, D., Trivedi, M., Law, I., Singh, N., Schilling, M. E., Hussain, E., & Farber, B. (2013). Replicating changes in hand hygiene in a surgical intensive care unit with remote video auditing and feedback. American Journal of Infection Control, 41(10), 925-927. https://doi.org/10.1016/j.ajic.2012.12.011 Baines, S., Ruz, M., Rao, A., Denison, R., & Nobre, A. C. (2011). Modulation of neural activity by motivational and spatial biases. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2011.04.029 Barrett, D. J. K., & Krumbholz, K. (2012). Evidence for multisensory integration in the elicitation of prior entry by bimodal cues. Experimental Brain Research, 222(1-2), 11-20. https://doi.org/10.1007/s00221-012-3191-8 Bellettiere, J., Hughes, S. C., Liles, S., Boman-Davis, M., Klepeis, N., Blumberg, E., … Hovell, M. F. (2014). Developing and selecting auditory warnings for a real-time behavioral intervention. American Journal of Public Health Research, 2(6), 232-238. https://doi.org/10.12691/ajphr-2-6-3 Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9/10), 341-347. https://doi.org/10.1097/AUD.0b013e31821473f7 Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research. https://doi.org/10.1007/s00221-010-2510-1 Broadbent, D. E. (1958). Perception and communication. Pergamon Press. Bucker, B., & Theeuwes, J. (2014). The effect of reward on orienting and reorienting in exogenous cuing. Cognitive, Affective and Behavioral Neuroscience, 14(2), 635-646. https://doi.org/10.3758/s13415-014-0278-7 Bucker, B., & Theeuwes, J. (2016). Appetitive and aversive outcome associations modulate exogenous cueing. Attention, Perception, and Psychophysics, 78, 2253–2265. https://doi.org/10.3758/s13414-016-1107-6 Camara, E., Manohar, S., & Husain, M. (2013). Past rewards capture spatial attention and action choices. Experimental Brain Research, 230(3), 291-300. https://doi.org/10.1007/s00221-013-3654-6 Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–62. https://doi.org/10.1016/j.visres.2012.12.005 Cornsweet, T. N. (1962). The staircase-method in psychophysics. The American Journal of Psychology, 75(3), 485-491. https://doi.org/10.2307/1419876 Diederich, A., & Colonius, H. (2015). The time window of multisensory integration: Relating reaction times and judgments of temporal order. Psychological Review, 122(2), 232–241. https://doi.org/10.1037/A0038696 Driver, J. (2001). A selective review of selective attention research from the past century. British Journal of Psychology, 92(1), 53-78. https://doi.org/10.1348/000712601162103 Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron, 57(1), 11-23. https://doi.org/10.1016/j.neuron.2007.12.013 Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668-674. https://doi.org/10.1037/1528-3542.7.3.668 Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 25(2), 514-538. https://doi.org/10.3758/s13423-017-1380-y Frassinetti, F., Bolognini, N., & Làdavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147(3), 332-343. https://doi.org/10.1007/s00221-002-1262-y Godijn, R., & Theeuwes, J. (2002). Programming of Endogenous and Exogenous Saccades: Evidence for a Competitive Integration Model. https://doi.org/10.1037/0096-1523.28.5.1039 Graham, R. (1999). Use of auditory icons as emergency warnings: Evaluation within a vehicle collision avoidance application. Ergonomics, 42(9), 1233-1248. https://doi.org/10.1080/001401399185108 Haas, E. C., & Van Erp, J. B. F. (2014). Multimodal warnings to enhance risk communication and safety. Safety Science, 61, 29-35. https://doi.org/10.1016/j.ssci.2013.07.011 Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150. https://doi.org/10.3389/fnins.2014.00150 Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103. https://doi.org/10.1523/jneurosci.1026-10.2010 Ho, C., Santangelo, V., & Spence, C. (2009). Multisensory warning signals: when spatial correspondence matters. Experimental Brain Research 2009 195:2, 195(2), 261–272. https://doi.org/10.1007/S00221-009-1778-5 Hoofs, V., Carsten, T., Boehler, C. N., & Krebs, R. M. (2019). Interactions between incentive valence and action information in a cued approach–avoidance task. Psychological Research, 83(1), 13-25. https://doi.org/10.1007/s00426-018-0975-x Itthipuripat, S., Vo, V. A., Sprague, T. C., & Serences, J. T. (2019). Value-driven attentional capture enhances distractor representations in early visual cortex. PLoS Biology, 17(8). https://doi.org/10.1371/journal.pbio.3000186 Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10-12), 1489-1506. https://doi.org/10.1016/S0042-6989(99)00163-7 Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194-203. https://doi.org/10.1038/35058500 JASP Team. (2018). JASP (Version 0.9)[Computer software]. [Computer Software]. Keefe, J. M., & Störmer, V. S. (2021). Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention: Endogenous & exogenous orienting of attention. NeuroImage, 225, 117495. https://doi.org/10.1016/j.neuroimage.2020.117495 Klemen, J., & Chambers, C. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2011.04.015 Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607-615. https://doi.org/10.1093/cercor/bhr134 Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 0(NOV), 863. https://doi.org/10.3389/FPSYG.2013.00863 Lu, Z. L., Tse, H. C. H., Dosher, B. A., Lesmes, L. A., Posner, C., & Chu, W. (2009). Intra- and cross-modal cuing of spatial attention: Time courses and mechanisms. Vision Research, 49(10), 1081-1096. https://doi.org/10.1016/j.visres.2008.05.021 Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis?: What does “failure to replicate” really mean? American Psychologist, 70(6), 487-498. https://doi.org/10.1037/a0039400 McDonald, J. J., & Ward, L. M. (2000). Involuntary listening AIDS seeing: Evidence from Human Electrophysiology. Psychological Science, 11(2), 167-171. https://doi.org/10.1111/1467-9280.00233 McDonald, J. J., Teder-Saälejärvi, W. A., & Hillyard, S. A. (2000). Involuntary orienting to sound improves visual perception. Nature, 407(6806). https://doi.org/10.1038/35038085 McDonald, J. J., Teder-Sälejärvi, W. A., & Ward, L. M. (2001). Multisensory integration and crossmodal attention effects in the human brain. Science, 292(5523), 1791. https://doi.org/10.1126/SCIENCE.292.5523.1791A Meredith, M. A. , & Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640–662. https://doi.org/10.1152/JN.1986.56.3.640 Milstein, D. M., & Dorris, M. C. (2007). The influence of expected value on saccadic preparation. Journal of Neuroscience, 27(18), 4810-4818. https://doi.org/10.1523/JNEUROSCI.0577-07.2007 Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prévost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55. https://doi.org/10.3389/fnins.2015.00055 Munneke, J., Hoppenbrouwers, S. S., & Theeuwes, J. (2015). Reward can modulate attentional capture, independent of top-down set. Attention, Perception, and Psychophysics, 77(8), 2540-2548. https://doi.org/10.3758/s13414-015-0958-6 Newport, R., & Howarth, S. (2009). Social gaze cueing to auditory locations. Quarterly Journal of Experimental Psychology, 62(4), 625-634. https://doi.org/10.1080/17470210802486027 Ngo M. K, & Spence, C. (2010). Auditory, tactile, and multisensory cues facilitate search for dynamic visual stimuli. Attention, Perception & Psychophysics, 72(6), 1654–1665. https://doi.org/10.3758/APP.72.6.1654 Nobre, A. C., & van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 19(1), 34-48. https://doi.org/10.1038/nrn.2017.141 Noesselt, T., Bergmann, D., Hake, M., Heinze, H. J., & Fendrich, R. (2008). Sound increases the saliency of visual events. Brain Research, 1220, 157-163. https://doi.org/10.1016/j.brainres.2007.12.060 O’Brien, F., & Cousineau, D. (2015). Representing error bars in within-subject designs in typical software packages. The quantitative methods for psychology, 10(1), 56-67. Oskarsson, P. A., Eriksson, L., & Carlander, O. (2012). Enhanced perception and performance by multimodal threat cueing in simulated combat vehicle. Human Factors, 54(1), 122-137. https://doi.org/10.1177/0018720811424895 Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231 Quigley, C., Onat, S., Harding, S., Cooke, M., & König, P. (2007). Audio-visual integration during overt visual attention. Journal of Eye Movement Research, 1(2). https://doi.org/10.16910/JEMR.1.2.4 Santangelo, V., & Spence, C. (2007). Multisensory cues capture spatial attention regardless of perceptual load. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1311-1321. https://doi.org/10.1037/0096-1523.33.6.1311 Santangelo, V., Van Der Lubbe, R. H. J., Belardinelli, M. O., & Postma, A. (2006). Spatial attention triggered by unimodal, crossmodal, and bimodal exogenous cues: A comparison of reflexive orienting mechanisms. Experimental Brain Research, 173(1), 40-48. https://doi.org/10.1007/s00221-006-0361-6 Santangelo, V., Ho, C., & Spence, C. (2008). Capturing spatial attention with multisensory cues. Psychonomic Bulletin and Review, 15(2), 398-403. https://doi.org/10.3758/PBR.15.2.398 Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task preparation processes related to reward prediction precede those related to task-difficulty expectation. NeuroImage, 84, 639-647. https://doi.org/10.1016/j.neuroimage.2013.09.039 Schmitt, M., Postma, A., & De Haan, E. (2000). Interactions between exogenous auditory and visual spatial attention. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 53(1), 105-130. https://doi.org/10.1080/713755882 Schürmann, M., Grumbt, M., Heide, W., & Verleger, R. (2003). Effects of same- and different-modality cues in a Posner task: Extinction-type, spatial, and non-spatial deficits after right-hemispheric stroke. Cognitive Brain Research, 16(3), 348-358. https://doi.org/10.1016/S0926-6410(02)00303-8 Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., & Mesulam, M. M. (2005). Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cerebral Cortex, 15(12), 1855-1865. https://doi.org/10.1093/cercor/bhi063 Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics 1997 59:1, 59(1), 1–22. https://doi.org/10.3758/BF03206843 Spence, C., & Driver, J. (1999). A new approach to the design of multimodal warning signals. Engineering Psychology and Cognitive Ergonomics, 4, 455-461. Spence, C., & Santangelo, V. (2009). Capturing spatial attention with multisensory cues: A review. Hearing Research, 258(1–2), 134–142. https://doi.org/10.1016/j.heares.2009.04.015 Störmer, V. S., McDonald, J. J., & Hillyard, S. A. (2019). Involuntary orienting of attention to sight or sound relies on similar neural biasing mechanisms in early visual processing. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2019.107122 Talsma, D., Senkowski, D., & Woldorff, M. G. (2009). Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Experimental Brain Research. https://doi.org/10.1007/s00221-009-1858-6 Van der Burg, E., Olivers, C. N. L., Bronkhorst, A. W., & Theeuwes, J. (2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1053-1065. https://doi.org/10.1037/0096-1523.34.5.1053 Vroomen, J., & De Gelder, B. (2000). Sound enhances visual perception: Cross-modal effects of auditory organization on vision. Journal of Experimental Psychology: Human Perception and Performance, 26(5), 1583-1590. https://doi.org/10.1037/0096-1523.26.5.1583 Ward, L. M. (1994). Supramodal and modality-specific mechanisms for stimulus-driven shifts of auditory and visual attention. Canadian Journal of Experimental Psychology, 48(2), 242-59. https://doi.org/10.1037/1196-1961.48.2.242 Watson, P., Pearson, D., Most, S. B., Theeuwes, J., Wiers, R. W., & Le Pelley, M. E. (2019). Attentional capture by Pavlovian reward-signalling distractors in visual search persists when rewards are removed. PLoS ONE. https://doi.org/10.1371/journal.pone.0226284 Watson, P., Pearson, D., Theeuwes, J., Most, S. B., & Le Pelley, M. E. (2020). Delayed disengagement of attention from distractors signalling reward. Cognition. https://doi.org/10.1016/j.cognition.2019.104125 Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron. https://doi.org/10.1016/j.neuron.2005.01.010 Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford University Press.