Hướng dẫn đánh giá vi cấu trúc xương ở động vật gặm nhấm bằng máy chụp cắt lớp vi mô

Oxford University Press (OUP) - Tập 25 Số 7 - Trang 1468-1486 - 2010
Mary Bouxsein1, Steven K. Boyd2, Blaine A. Christiansen1, Robert E. Guldberg3, Karl J. Jepsen4, Ralph Müller5
1Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
2Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
3Parker H Petit Institute for Bioengineering and Bioscience, George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
4Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY, USA
5Institute for Biomechanics, ETH Zurich, Zurich, Switzerland

Tóm tắt

Sự sử dụng hình ảnh chụp cắt lớp vi mô (µCT) độ phân giải cao để đánh giá hình thái xương kiểu xốp và xương vỏ đã phát triển đến mức độ lớn. Hiện có một số hệ thống µCT thương mại, mỗi hệ thống có cách tiếp cận khác nhau đối với việc thu nhận hình ảnh, đánh giá và báo cáo kết quả. Sự thiếu nhất quán này khiến cho việc giải thích các kết quả đã báo cáo trở nên khó khăn và cũng làm cho việc so sánh các phát hiện từ các nghiên cứu khác trở nên phức tạp. Bài báo này đề cập đến nhu cầu cấp thiết về thuật ngữ chuẩn hóa và báo cáo nhất quán các thông số liên quan đến việc thu nhận và phân tích hình ảnh, cũng như các đánh giá kết quả chính, đặc biệt là trong phân tích ex vivo các mẫu động vật gặm nhấm. Do đó, các hướng dẫn trong bài viết này cung cấp các khuyến nghị liên quan đến (1) thuật ngữ và đơn vị tiêu chuẩn, (2) thông tin cần bao gồm trong việc mô tả phương pháp cho một thí nghiệm nhất định, và (3) một tập hợp những biến số kết quả tối thiểu nên được báo cáo. Mặc dù mục tiêu nghiên cứu cụ thể sẽ xác định thiết kế thí nghiệm, các hướng dẫn này nhằm đảm bảo việc báo cáo chính xác và nhất quán về đo lường hình thái học và mật độ xương thu được từ µCT. Cụ thể, phần phương pháp cho các bài báo trình bày kết quả dựa trên µCT phải bao gồm các chi tiết về các khía cạnh quét sau: (1) thu nhận hình ảnh, bao gồm môi trường quét, điện áp ống X-quang và kích thước voxel, cũng như mô tả rõ ràng về kích thước và vị trí của thể tích quan tâm và phương pháp được sử dụng để phân định các vùng xương kiểu xốp và xương vỏ, và (2) xử lý hình ảnh, bao gồm các thuật toán được sử dụng để lọc hình ảnh và phương pháp được sử dụng cho việc phân đoạn hình ảnh. Các phân tích hình thái học nên dựa trên các thuật toán 3D mà không dựa vào những giả định về cấu trúc cơ bản bất cứ khi nào có thể. Khi báo cáo kết quả µCT, tập hợp các biến số tối thiểu cần được sử dụng để mô tả hình thái học xương kiểu xốp bao gồm phân số thể tích xương và số lượng, độ dày và khoảng cách của xương kiểu xốp. Tập hợp các biến số tối thiểu cần được sử dụng để mô tả hình thái học xương vỏ bao gồm diện tích mặt cắt tổng, diện tích xương vỏ, phân số diện tích xương vỏ và độ dày xương vỏ. Các biến số khác cũng có thể thích hợp tùy thuộc vào câu hỏi nghiên cứu và chất lượng kỹ thuật của phép quét. Thuật ngữ chuẩn hóa, được trình bày trong bài viết này, nên được tuân theo khi báo cáo kết quả.

Từ khóa


Tài liệu tham khảo

Parfitt, 1987, Bone histomorphometry: standardization of nomenclature, symbols and units, J Bone Miner Res., 2, 595, 10.1002/jbmr.5650020617

Feldkamp, 1989, The direct examination of three-dimensional bone architecture in vitro by computed tomography, J Bone Miner Res., 4, 3, 10.1002/jbmr.5650040103

Martin-Badosa, 2003, Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT, Radiology., 229, 921, 10.1148/radiol.2293020558

Kapadia, 1998, Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis, Technol Health Care., 6, 361, 10.3233/THC-1998-65-609

Bonnet, 2009, Assessment of trabecular bone microarchitecture by two different X-ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices, Med Phys., 36, 1286, 10.1118/1.3096605

Waarsing, 2004, An improved segmentation method for in vivo microCT imaging, J Bone Miner Res., 19, 1640, 10.1359/JBMR.040705

Alexander, 2001, Human parathyroid hormone 1-34 reverses bone loss in ovariectomized mice, J Bone Min Res., 16, 1665, 10.1359/jbmr.2001.16.9.1665

Barbier, 1999, The visualization and evaluation of bone architecture in the rat using three-dimensional X-ray microcomputed tomography, J Bone Miner Metab., 17, 37, 10.1007/s007740050061

Kuhn, 1990, Evaluation of a microcomputed tomography system to study trabecular bone structure, J Orthop Res., 8, 833, 10.1002/jor.1100080608

Müller, 1998, Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography, Bone., 23, 59, 10.1016/S8756-3282(98)00068-4

Fanuscu, 2004, Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible, Clin Oral Implants Res., 15, 213, 10.1111/j.1600-0501.2004.00969.x

Chappard, 2005, Comparison insight bone measurements by histomorphometry and microCT, J Bone Miner Res., 20, 1177, 10.1359/JBMR.050205

Akhter, 2007, Transmenopausal changes in the trabecular bone structure, Bone., 41, 111, 10.1016/j.bone.2007.03.019

Hildebrand, 1997, A new method for the model independent assessment of thickness in three-dimensional images, J Micros., 185, 67, 10.1046/j.1365-2818.1997.1340694.x

Laib, 1997, Ridge number density: a new parameter for in vivo bone structure analysis, Bone., 21, 541, 10.1016/S8756-3282(97)00205-6

Hildebrand, 1997, Quantification of bone microarchitecture with the structure model index, Comp Meth Biomech Biomed Eng., 1, 5, 10.1080/01495739708936692

Fajardo, 2009, Specimen size and porosity can introduce error into microCT-based tissue mineral density measurements, Bone., 44, 176, 10.1016/j.bone.2008.08.118

van Rietbergen, 1998, Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images, Technol Health Care., 6, 413, 10.3233/THC-1998-65-613

Layton, 1988, Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography, Arthritis Rheum., 31, 1400, 10.1002/art.1780311109

Hankenson, 2005, Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head, Mol Cell Biol., 25, 5599, 10.1128/MCB.25.13.5599-5606.2005

Turner, 2000, Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice, J Bone Miner Res., 15, 1126, 10.1359/jbmr.2000.15.6.1126

Jepsen, 2003, Hierarchical relationship between bone traits and mechanical properties in inbred mice, Mamm Genome., 14, 97, 10.1007/s00335-002-3045-y

Bouxsein, 2005, Ovariectomy-induced bone loss varies among inbred strains of mice, J Bone Miner Res., 20, 1085, 10.1359/JBMR.050307

Bonadio, 1993, A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility, J Clin Invest., 92, 1697, 10.1172/JCI116756

Lewis, 1993, Osteoporosis induced in mice by overproduction of interleukin 4, Proc Natl Acad Sci U S A., 90, 11618, 10.1073/pnas.90.24.11618

Silva, 2004, Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senile osteoporosis, Bone., 35, 425, 10.1016/j.bone.2004.03.027

Laib, 2001, The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT, Osteoporos Int., 12, 936, 10.1007/s001980170022

Hopper, 2007, Quantitative microcomputed tomography assessment of intratrabecular, intertrabecular, and cortical bone architecture in a rat model of severe renal osteodystrophy, J Comput Assist Tomogr., 31, 320, 10.1097/01.rct.0000238007.19258.3d

von Stechow, 2004, Differential transcriptional effects of PTH and estrogen during anabolic bone formation, J Cell Biochem., 93, 476, 10.1002/jcb.20174

Christiansen, 2006, The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice, Ann Biomed Eng., 34, 1149, 10.1007/s10439-006-9133-5

Squire, 2004, Genetic variations that regulate bone morphology in the male mouse skeleton do not define its susceptibility to mechanical unloading, Bone., 35, 1353, 10.1016/j.bone.2004.08.010

Uthgenannt, 2007, Use of the rat forelimb compression model to create discrete levels of bone damage in vivo, J Biomech., 40, 317, 10.1016/j.jbiomech.2006.01.005

Naik, 2009, Reduced COX-2 expression in aged mice is associated with impaired fracture healing, J Bone Miner Res., 24, 251, 10.1359/jbmr.081002

Gardner, 2008, Pause insertions during cyclic in vivo loading affect bone healing, Clin Orthop Relat Res., 466, 1232, 10.1007/s11999-008-0155-1

Duvall, 2007, Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice, J Bone Miner Res., 22, 286, 10.1359/jbmr.061103

Shen, 2009, Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice, J Orthop Res., 27, 1298, 10.1002/jor.20886

Gerstenfeld, 2009, Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing, J Bone Miner Res., 24, 196, 10.1359/jbmr.081113

Morgan, 2009, Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function, Bone., 44, 335, 10.1016/j.bone.2008.10.039

Bolland, 2008, Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs, Bone., 43, 195, 10.1016/j.bone.2008.02.013

Palmer, 2006, Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography, Proc Natl Acad Sci U S A., 103, 19255, 10.1073/pnas.0606406103

Xie, 2009, Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-muCT, Osteoarthritis Cartilage.

Xie, 2009, Quantitative assessment of articular cartilage morphology via EPIC-microCT, Osteoarthritis Cartilage., 17, 313, 10.1016/j.joca.2008.07.015

Nazarian, 2008, Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density, Bone., 43, 302, 10.1016/j.bone.2008.04.009

Hsieh, 2003, Computed tomography: principles, design, artifacts, and recent advances

Ritman, 2004, Micro-computed tomography-current status and developments, Annu Rev Biomed Eng., 6, 185, 10.1146/annurev.bioeng.6.040803.140130

Rüegsegger, 1997, Medical Imaging Systems Techniques and Applications—Brain and Skeletal Systems, 169

Müller, 1996, Resolution dependence of microstructural properties of cancellous bone based on three-dimensional micro-tomography, Technology and Health Care., 9, 1

Guldberg, 1998, The accuracy of digital image-based finite element models, J Biomech Eng., 120, 289, 10.1115/1.2798314

Kalendar, 2005, Computed Tomography

Harrigan, 1988, Limitations of the continuum assumption in cancellous bone, J Biomech., 21, 269, 10.1016/0021-9290(88)90257-6

Fajardo, 2001, Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography, Am J Phys Anthropol., 115, 327, 10.1002/ajpa.1089

Stauber, 2008, Micro-computed tomography: a method for the non-destructive evaluation of the three-dimensional structure of biological specimens, Methods Mol Biol., 455, 273, 10.1007/978-1-59745-104-8_19

Buie, 2007, Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis, Bone., 41, 505, 10.1016/j.bone.2007.07.007

Kohler, 2007, Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models, Bone., 41, 659, 10.1016/j.bone.2007.05.018

Rajagopalan, 2005, Optimal segmentation of microcomputed tomographic images of porous tissue-engineering scaffolds, J Biomed Mater Res A., 75, 877, 10.1002/jbm.a.30498

Glatt, 2007, Age-related changes in trabecular architecture differ in female and male C57BL/6J mice, J Bone Miner Res., 22, 1197, 10.1359/jbmr.070507

Ominsky, 2009, One year of transgenic overexpression of osteoprotegerin in rats suppressed bone resorption and increased vertebral bone volume, density, and strength, J Bone Miner Res., 24, 1234, 10.1359/jbmr.090215

Ridler, 1978, Picture thresholding using an iterative selection method, IEEE Trans on Systems, Man and Cybernetics SMC., 8, 630, 10.1109/TSMC.1978.4310039

Meinel, 2005, Silk implants for the healing of critical size bone defects, Bone., 37, 688, 10.1016/j.bone.2005.06.010

Dufresne, 1998, Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging, Technol Health Care., 6, 351, 10.3233/THC-1998-65-608

Tommasini, 2009, Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae, J Bone Miner Res., 24, 606, 10.1359/jbmr.081224

Parfitt, 1983, Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss, J Clin Invest., 72, 1396, 10.1172/JCI111096

Hildebrand, 1999, Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus, J Bone Miner Res., 14, 1167, 10.1359/jbmr.1999.14.7.1167

Muller, 1995, Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures, Med Eng Phys., 17, 126, 10.1016/1350-4533(95)91884-J

Lorensen, 1987, Marching cubes: a high resolution 3D surface construction algorithm, Computer Graphics., 21, 163, 10.1145/37402.37422

Danielson, 1980, Euclidean distance mapping, Comp Vision Graph Image Processing., 14, 227, 10.1016/0146-664X(80)90054-4

Whitehouse, 1974, The quantitative morphology of anisotropic trabecular bone, J Microsc., 101, 153, 10.1111/j.1365-2818.1974.tb03878.x

Odgaard, 1990, Estimation of structural anisotropy based on volume orientation, A new concept. J Microsc., 157, 149, 10.1111/j.1365-2818.1990.tb02955.x

Cruz-Orive, 1992, Characterizing anisotropy: a new concept, Micron and Microscopica Acta., 23, 75, 10.1016/0739-6260(92)90076-P

Odgaard, 1997, Three-dimensional methods for quantification of cancellous bone architecture, Bone., 20, 315, 10.1016/S8756-3282(97)00007-0

Odgaard, 1993, Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions, Bone., 14, 173, 10.1016/8756-3282(93)90245-6

Hildebrand, 1997, Quantification of Bone Microarchitecture with the Structure Model Index, Comput Methods Biomech Biomed Engin., 1, 15, 10.1080/01495739708936692

Stauber, 2006, Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry, Bone., 38, 475, 10.1016/j.bone.2005.09.019

Mulder, 2004, Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone, Acta Radiol., 45, 769, 10.1080/02841850410008171

Meganck, 2009, Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD, Bone., 45, 1104, 10.1016/j.bone.2009.07.078

Kazakia, 2008, Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements, Med Phys., 35, 3170, 10.1118/1.2924210

Kohler, 2005, Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements, Calcif Tissue Int., 77, 281, 10.1007/s00223-005-0039-2

Tommasini, 2005, Genetic variation in structure-function relationships for the inbred mouse lumbar vertebral body, J Bone Miner Res., 20, 817, 10.1359/JBMR.041234

Tommasini, 2008, Percolation theory relates corticocancellous architecture to mechanical function in vertebrae of inbred mouse strains, Bone., 42, 743, 10.1016/j.bone.2007.12.009

Hamrick, 2004, Leptin deficiency produces contrasting phenotypes in bones of the limb and spine, Bone., 34, 376, 10.1016/j.bone.2003.11.020

Judex, 2004, Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology, J Bone Miner Res., 19, 600, 10.1359/JBMR.040101

Leng, 2008, Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent, J Mech Behav Biomed Mater., 1, 68, 10.1016/j.jmbbm.2007.06.002

Chen, 2007, Host immune competence and local ischemia affects the functionality of engineered vasculature, Microcirculation., 14, 77, 10.1080/10739680601131101

Duvall, 2004, Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury, Am J Physiol Heart Circ Physiol., 287, H302, 10.1152/ajpheart.00928.2003

Duvall, 2008, The role of osteopontin in recovery from hind limb ischemia, Arterioscler Thromb Vasc Biol., 28, 290, 10.1161/ATVBAHA.107.158485

Waarsing, 2004, Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data, Bone., 34, 163, 10.1016/j.bone.2003.08.012

Boyd, 2006, Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography, Ann Biomed Eng., 34, 1587, 10.1007/s10439-006-9168-7

Nishiyama, Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration, Bone., 46, 155, 10.1016/j.bone.2009.09.023

Campbell, 2008, Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT, Osteoporos Int., 10.1007/s00198-008-0581-7

Buie, 2008, Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice, J Bone Miner Res., 23, 2048, 10.1359/jbmr.080808

David, 2006, Two-week longitudinal survey of bone architecture alteration in the hindlimb-unloaded rat model of bone loss: sex differences, Am J Physiol Endocrinol Metab., 290, E440, 10.1152/ajpendo.00293.2004

David, 2003, Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography, J Bone Miner Res., 18, 1622, 10.1359/jbmr.2003.18.9.1622

Brouwers, 2009, Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT, J Orthop Res., 27, 1521, 10.1002/jor.20913

Brouwers, Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT, J Orthop Res., 28, 62, 10.1002/jor.20951

Brouwers, 2008, Influence of early and late zoledronic acid administration on vertebral structure and strength in ovariectomized rats, Calcif Tissue Int., 83, 186, 10.1007/s00223-008-9160-3

Brouwers, 2009, Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT, Osteoporos Int., 20, 1823, 10.1007/s00198-009-0882-5

Judex, 2010, Quantification of adiposity in small rodents using micro-CT, Methods., 50, 14, 10.1016/j.ymeth.2009.05.017

Dare, 1997, Effects of ionizing radiation on proliferation and differentiation of osteoblast-like cells, J Dent Res., 76, 658, 10.1177/00220345970760020601

Klinck, 2008, Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning, Med Eng Phys., 10.1016/j.medengphy.2007.11.004

Guldberg, 2004, Microcomputed tomography imaging of skeletal development and growth, Birth Defects Res C Embryo Today., 72, 250, 10.1002/bdrc.20016

Wang, 2007, The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development, J Clin Invest., 117, 1616, 10.1172/JCI31581

Abruzzo, 2008, Microscopic computed tomography imaging of the cerebral circulation in mice: feasibility and pitfalls, Synapse., 62, 557, 10.1002/syn.20511

Suo, 2007, Hemodynamic shear stresses in mouse aortas: implications for atherogenesis, Arterioscler Thromb Vasc Biol., 27, 346, 10.1161/01.ATV.0000253492.45717.46

Awad, 2007, Recent advances in gene delivery for structural bone allografts, Tissue Eng., 13, 1973, 10.1089/ten.2006.0107

Rai, 2007, Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair, J Biomed Mater Res A., 81, 888, 10.1002/jbm.a.31142

Mukundan, 2006, A liposomal nanoscale contrast agent for preclinical CT in mice, AJR Am J Roentgenol., 186, 300, 10.2214/AJR.05.0523

Nuzzo, 2002, Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment, J Bone Miner Res., 17, 1372, 10.1359/jbmr.2002.17.8.1372

Kinney, 1998, Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis, Technol Health Care., 6, 339, 10.3233/THC-1998-65-607

Burghardt, 2007, Evaluation of fetal bone structure and mineralization in IGF-I deficient mice using synchrotron radiation microtomography and Fourier transform infrared spectroscopy, Bone., 40, 160, 10.1016/j.bone.2006.06.017

Matsumoto, 2006, Monochromatic synchrotron radiation muCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae, J Appl Physiol., 100, 274, 10.1152/japplphysiol.00495.2005

Raum, 2007, Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice, Bone., 41, 1017, 10.1016/j.bone.2007.08.042

Schneider, 2007, Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT, J Bone Miner Res., 22, 1557, 10.1359/jbmr.070703