Guided random walk through some high dimensional problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovich, F., Benjamini, Y., Donoho, D.L. and Johnstone, I.M. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist., 34, 584–653.
Anderson G.W. and Zeitouni, O. (2008). A CLT for regularized sample covariance matrices. Ann. Statist., 36, 2553–2576.
Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: by example of a two sample problem. Statist. Sinica, 6, 311–329.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57, 289–300.
Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165–1188.
Bickel, P.J. and Doksum, K.A. (2007). Mathematical Statistics. Second Edition. Pearson Prentice Hall.
Bickel P.J. and Levina, E. (2004). Some theory for Fisher’s Linear Discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations. Bernoulli, 10 989–1010.
Bickel, P.J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist., 36, 2577–2605.
Bogdan, M., Ghosh, J.K. and Doerge, R.W. (2004). Modifying the Schwartz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics, 167, 989–999.
Bogdan, M., Ghosh, J.K. and Tokdar, S. (2008). A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, (N. Balakrishnan, Edsel Pena and Mervyn J. Silvapulle, eds.). Inst. Math. Stat. Collect., 1. IMS, Beachwood, USA, 211–230.
Bogdan, M., Chakrobarti, A., Frommlet, F. and Ghosh, J.K. (2010). Bayes Oracle and asymptotic optimality for multiple testing procedures under sparsity. Submitted.
Brown, L. and Greenshtein, E. (2009). Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means. Ann. Statist., 37, 1685–1704.
Cai, T., Jin, J. and Low, M. (2007). Estimation and confidence sets for sparse normal mixtures. Ann. Statist., 35, 2421–2449.
Donoho, D. and Jin, J. (2004). Higher Criticism for detecting sparse heterogeneous mixtures. Ann. Statist., 32, 962–994.
Donoho, D. and Johnstone, I.M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425–455.
Donoho, D. and Johnstone, I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90, 1200–1224.
Du, J., Zhang, H. and Mandrekar, V.S. (2009). Fixed-domain asymptotic properties of tapered maximum likelihood estimators. Ann. Statist., 37, 3330–3361.
Efron, B. (2009). Empirical Bayes Estimates for Large-Scale Prediction Problems. J. Amer. Statist. Assoc., 104, 1015–1028.
Efron, B. and Morris, C. (1972). Empirical Bayes on vector observations: An extension of Stein’s method. Biometrika, 59, 335–347.
Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors-an empirical Bayes approach. J. Amer. Statist. Assoc., 68, 117–130.
Efron, B. and Tibshirani, R. (2002). Empirical Bayes methods and false discovery rates for microarrays. Genet. Epidemiology, 23, 70–86.
Fan, J. and Fan, Y. (2008). High-dimensional classification using features annealed independence rules. Ann. Statist., 36, 2605–2637.
Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. Ann. Statist., 32, 1035–1061.
Ghosh, J.K., Delampady, M. and Samanta, T. (2006). An Introduction to Bayesian Analysis: Theory and Methods Springer Texts in Statistics. Springer, New York.
Greenshtein, E. and Park, J. (2009). Application of nonparametric empirical Bayes estimation to high dimensional classification. J. Mach. Learn. Res., 10, 1687–1704.
Greenshtein, E., Park, J. and Lebanon, G. (2009). Regularization through variable selection and conditional MLE with application to classification in high dimensions. J. Statist. Plann. Inference, 139, 385–395.
Greenshtein, E., Park, J. and Ritov, Y. (2008). Estimating the mean of high valued observation in high dimensions. J. Statist. Theory Pract., 2, 407–418.
Hand, D.J. and Yu, K. (2001). Idiot’s Bayes — not so stupid after all? Internat. Statist. Rev., 69, 385–395.
Jeng, X. (2009). Covariance adaptation and regularization in large scale hypothesis testing and high dimensional regression. Ph.D. Thesis, Purdue University.
Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation of normal means. Ann. Statist., 37, 1647–1684.
Johnstone, I.M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy Widom limits and rates of convergence, Ann. Statist., 36, 2638–2716.
Johnstone, I.M. and Silverman, B. (2004). Needles and hay in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Statist., 32, 1594–1649.
Martin, R. and Tokdar, S.T. (2009). Kullbak-Leibler projections, recursive estimation of a mixing distribution. Unpublished manuscript.
Meinshausen, M. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independent tested hypotheses. Ann. Statist., 34, 373–393.
Morris, C.N. (1983). Parametric empirical Bayes inference: Theory and applications (with discussion). J. Amer. Statist. Assoc., 78, 47–65.
Park, J. (2009). Independent rule in classification of multivariate binary data. J. Multivariate Anal., 100, 2270–2286.
Park, J. and Ghosh, J.K. (2007). Persistence of the plug-in rule in classification of high dimensional multivariate binary data. J. Statist. Plann. Inference, 147, 3687–3705.
Rajaratnam, B., Massam, H. and Carvalho, C.M. (2008). Flexible covariance estimation in graphical Gaussian models. Ann. Statist., 36, 2818–2849.
Robbins, H. (1951). Asymptotically subminimax solutions of compound statistical decision problems. In Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, (J. Neyman, ed.). Univ. California Press, Berkeley, 131–148.
Robbins, H. (1956). An empirical Bayes approach to statistics. In Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability, 1, (J. Neyman, ed.). Univ. California Press, Berkeley, 157–163.
Robbins, H. (1964) The empirical Bayes approach to statistical decision problems. Ann. Math. Statist., 35, 1–20.
Robbins, H. (1977) Prediction and estimation for the compound poisson distribution. Proc. Natl. Acad. Sci., 74, 2670–2671.
Sarkar, S.K. (2002). Some results on false discovery rate in stepwise multiple testing procedure. Ann. Statist., 34, 239–257.
Scott, J.G. and Berger, J.O. (2006). An exploration of aspects of Bayesian multiple testing. J. Statist. Plann. Inference, 136, 2144–2162.
Scott, J.G. and Berger, J.O. (2010). Bayes and empirical Bayes multiplicity adjustment in the variable selection problem. Ann. Statist., to appear.
Seeger, P. (1968). A note on a method for the analysis of significances en mass. Technometrics, 10, 586–593.
Simes, R.J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751–754.
Sorić, B. (1989). Statistical “discoveries” and effect size estimation. J. Amer. Statist. Assoc., 84, 608–610.
Storey, J.D. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 479–498.
Storey, J.D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Statist., 31, 2013–2035.
Storey, J.D. (2007). The optimal discovery procedure: A new approach to simultaneous significance testing. J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 347–368.
Storey, J.D., Taylor, J.E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 187–205.
Sun, W. and Cai, T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. J. Amer. Statist. Assoc., 102, 901–912.
Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci., 99, 6567–6572.
Tokdar, S.T., Martin, R. and Ghosh, J.K. (2009). Consistency of a recursive estimate of mixing distributions. Ann. Statist., 37, 2502–2522.
Wilbur, J.D., Ghosh, J.K., Nakatsu, C.H., Brouder, S.M. and Doerge, R.W. (2002). Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics, 58, 378–386.
Zhang, C.-H. (1997). Empirical Bayes and compound estimation of normal means. Statist. Sinica, 7, 181–194.
Zhang, C.-H. (2003). Compound decision theory and empirical Bayes method. Ann. Statist., 31, 379–390.
Zhang, C.-H. (2005a). General empirical Bayes wavelet methods and exactly adaptive minimax estimation. Ann. Statist., 33, 54–100.