Guided de-escalation of DAPT in acute coronary syndrome patients undergoing percutaneous coronary intervention with BVS implantation: a post-hoc analysis from the randomized TROPICAL-ACS trial

Journal of Thrombosis and Thrombolysis - Tập 47 - Trang 427-435 - 2019
Lukasz Koltowski1, Mariusz Tomaniak1, Lisa Gross2, Bartosz Rymuza1, Michal Kowara1, Radoslaw Parma3, Anna Komosa4, Mariusz Klopotowski5, Claudius Jacobshagen6, Tommaso Gori7, Daniel Aradi8, Kurt Huber9, Martin Hadamitzky10, Steffen Massberg2,11, Maciej Lesiak4, Krzysztof J. Filipiak1, Adam Witkowski5, Grzegorz Opolski1, Zenon Huczek1, Dirk Sibbing2,11
11st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
2Department of Cardiology, LMU München, Munich, Germany
3Division of Cardiology and Structural Heart Diseases, SMK in Katowice, Medical University of Silesia, Katowice, Poland
4First Department of Cardiology, Faculty of Medicine II, Poznan University of Medical Sciences, Poznan, Poland
5Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
6Department of Cardiology und Pneumology, Heart Centre/Georg-August-University Göttingen, Göttingen, Germany
7Department of Cardiology, University Medical Center and DZHK Rheim-Main, Mainz, Germany
8Heart Centre Balatonfüred and Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
93rd Medical Department, Cardiology and Intensive Care Medicine, and Sigmund Freud Private University, Medical School, Vienna, Austria
10Department of Radiology, Deutsches Herzzentrum, Munich, Germany
11DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany

Tóm tắt

To investigate the safety and efficacy of an early platelet function testing (PFT)-guided de-escalation of dual antiplatelet treatment (DAPT) in acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) with bioresorbable vascular scaffolds (BVS). Early DAPT de-escalation is a new non-inferior alternative to 12-months DAPT in patients with biomarker positive ACS treated with stent implantation. In this post-hoc analysis of the TROPICAL-ACS trial, which randomized 2610 ACS patients to a PFT-guided DAPT de-escalation (switch from prasugrel to clopidogrel) or to control group (uniform prasugrel), we compared clinical outcomes of patients (n = 151) who received a BVS during the index PCI. The frequency of the primary endpoint (cardiovascular death, myocardial infarction, stroke or BARC ≥ 2 bleeding) was 8.8% (n = 6) in the de-escalation group vs. 12.0% (n = 10) in the control group (HR 0.72, 95% CI 0.26–1.98, p = 0.52) at 12 months. One early definite stent thrombosis (ST) occurred in the control group (day 19) and 1 possible ST (sudden cardiovascular death) in the de-escalation group (day 86), both despite prasugrel treatment and in a background of high on-treatment platelet reactivity assessed at day 14 after randomization (ADP-induced platelet aggregation values of 108 U and 59 U, respectively). A PFT-guided DAPT de-escalation strategy could potentially be a safe and effective strategy in ACS patients with BVS implantation but the level of platelet inhibition may be of particular importance. This hypothesis-generating post-hoc analysis requires verification in larger studies with upcoming BVS platforms.

Tài liệu tham khảo

Sibbing D, Aradi D, Jacobshagen C et al (2016) A randomised trial on platelet function-guided de-escalation of antiplatelet treatment in ACS patients undergoing PCI. Thromb Haemost 117:188–195. https://doi.org/10.1160/TH16-07-0557 Sibbing D, Aradi D, Jacobshagen C et al (2017) Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet 390:1747–1757. https://doi.org/10.1016/S0140-6736(17)32155-4 Sibbing D, Gross L, Rieber J et al (2018) Age and outcomes following guided de-escalation of antiplatelet treatment in acute coronary syndrome patients undergoing percutaneous coronary intervention: results from the randomized TROPICAL-ACS trial. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy332 Antman EM, Wiviott SD, Murphy SA et al (2008) Early and late benefits of prasugrel in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a TRITON-TIMI 38 (TRial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet InhibitioN with Prasugrel-Thrombolysis In Myocardial Infarction) analysis. J Am Coll Cardiol 51:2028–2033. https://doi.org/10.1016/j.jacc.2008.04.002 Becker RC, Bassand J-P, Budaj A et al (2011) Bleeding complications with the P2Y12 receptor antagonists clopidogrel and ticagrelor in the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J 32:2933–2944. https://doi.org/10.1093/eurheartj/ehr422 Velders MA, Abtan J, Angiolillo DJ et al (2016) Safety and efficacy of ticagrelor and clopidogrel in primary percutaneous coronary intervention. Heart 102:617–625. https://doi.org/10.1136/heartjnl-2015-308963 Serruys PW, Chevalier B, Sotomi Y et al (2016) Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 388:2479–2491. https://doi.org/10.1016/S0140-6736(16)32050-5 Capodanno D, Gori T, Nef H et al (2015) Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10:1144–1153. https://doi.org/10.4244/EIJY14M07_11 Ali ZA, Gao R, Kimura T et al (2018) Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the ABSORB randomized trials. Circulation 137:464–479. https://doi.org/10.1161/CIRCULATIONAHA.117.031843 Cassese S, Byrne RA, Jüni P et al (2018) Midterm clinical outcomes with everolimus-eluting bioresorbable scaffolds versus everolimus-eluting metallic stents for percutaneous coronary interventions: a meta-analysis of randomised trials. EuroIntervention 13:1565–1573. https://doi.org/10.4244/EIJ-D-17-00492 Tello-Montoliu A, Rivera J, Hernández-Romero D et al (2016) Platelet reactivity over time in coronary artery disease patients treated with a bioabsorbable everolimus-eluting scaffold. Platelets 27:777–783. https://doi.org/10.1080/09537104.2016.1184750 Ellis SG, Steffenino G, Kereiakes DJ et al (2017) Clinical, angiographic, and procedural correlates of acute, subacute, and late absorb scaffold thrombosis. JACC Cardiovasc Interv 10:1809–1815. https://doi.org/10.1016/j.jcin.2017.06.067 Valgimigli M, Bueno H, Byrne RA et al (2018) 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 39:213–260. https://doi.org/10.1093/eurheartj/ehx419 Neumann F-J, Ahlsson A, Alfonso F et al (2018) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 34:2949. https://doi.org/10.1093/eurheartj/ehy394 Cuisset T, Capodanno D (2018) Trials of antithrombotic therapy in percutaneous coronary intervention: what evidence do we need to optimise our practice? EuroIntervention 14:19–23. https://doi.org/10.4244/EIJV14I1A2 Cassese S, Byrne RA, Ndrepepa G et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 387:537–544. https://doi.org/10.1016/S0140-6736(15)00979-4 Aradi D, Kirtane A, Bonello L et al (2015) Bleeding and stent thrombosis on P2Y12-inhibitors: collaborative analysis on the role of platelet reactivity for risk stratification after percutaneous coronary intervention. Eur Heart J 36:1762–1771. https://doi.org/10.1093/eurheartj/ehv104 Ormiston JA, Serruys PW, Regar E et al (2008) A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371:899–907. https://doi.org/10.1016/S0140-6736(08)60415-8 Onuma Y, Serruys PW, Perkins LEL et al (2010) Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation 122:2288–2300. https://doi.org/10.1161/CIRCULATIONAHA.109.921528 Katagiri Y, Stone GW, Onuma Y, Serruys PW (2017) State of the art: the inception, advent and future of fully bioresorbable scaffolds. EuroIntervention 13:734–750. https://doi.org/10.4244/EIJ-D-17-00499 Haude M, Ince H, Abizaid A et al (2016) Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J 37:2701–2709. https://doi.org/10.1093/eurheartj/ehw196 Abizaid A (2017) The FANTOM II study: first report for the 12-month clinical outcomes of the Fantom sirolimus eluting bioresorbable scaffold. EuroPCR, Sao Paulo Abizaid A, Costa RA, Schofer J et al (2016) Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions. JACC Cardiovasc Interv 9:565–574. https://doi.org/10.1016/j.jcin.2015.12.004 Haude M, Ince H, Kische S et al (2017) Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention 13:432–439. https://doi.org/10.4244/EIJ-D-17-00254 Cuisset T, Deharo P, Quilici J et al (2017) Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J 38:3070–3078. https://doi.org/10.1093/eurheartj/ehx175