Ảnh hưởng của khoảng cách vòng bảo vệ đến phản ứng bức xạ của đi-ốt lao động đơn photon

Springer Science and Business Media LLC - Tập 55 - Trang 1-9 - 2023
Faezeh Golmohammad Saray1, Fatemeh Shojaee2, Mohammad Azim Karami1
1School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
2Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy

Tóm tắt

Trong nghiên cứu này, hiệu ứng khoảng cách vòng bảo vệ đối với phản ứng liều tổng hợp ion hóa của đi-ốt lao động đơn photon (SPAD) được khảo sát. Tần suất phát hiện tối (DCR) dưới bức xạ tia X 1 Mrad (SiO2) giảm 12,9% bằng cách tạo khoảng cách giữa vòng bảo vệ và vùng hoạt động là 5 micromet trong một SPAD được sản xuất theo công nghệ CMOS (bipolar complementary metal-oxide semiconductor) điện áp cao 180 nm. Hơn nữa, xác suất phát hiện photon (PDP) của cấu trúc đề xuất và SPAD DPD thông thường được tính toán, cho thấy rằng sự biến đổi PDP của cấu trúc đề xuất là không đáng kể.

Từ khóa

#đi-ốt lao động đơn photon #SPAD #vòng bảo vệ #phản ứng bức xạ #tần suất phát hiện tối #xác suất phát hiện photon

Tài liệu tham khảo

Buchner, A., Hadrath, S., Burkard, R., Kolb, F., Ruskowski, J., Ligges, M., Grabmaier, A.: Analytical evaluation of signal-to-noise ratios for avalanche- and single-photon avalanche diodes. J. Sens. 21(8), 2887 (2021). https://doi.org/10.3390/s21082887 Campajola, M., Di Capua, F., Fiore, D., Sarnelli, E., Aloisio, A.: Proton induced dark count rate degradation in 150-nm CMOS single-photon avalanche diodes. Nucl. Instrum. 947, 162722 (2019). https://doi.org/10.1016/j.nima.2019.162722 Ceccarelli, F., Acconcia, G., Gulinatti, A., Ghioni, M., Rech, I., Osellame, R.: Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4(2), 2000102 (2021). https://doi.org/10.1002/qute.202000102 Dalal, R.: Simulation of irradiated detectors. In: The 23rd International Workshop on Vertex Detectors, p. 030. Sissa Medialab (2015) Fatima, A., Whitelaw, J., Zickus, V., McGhee, E., Insall, R., Machesky, L., Faccio, D.: Enhanced-resolution fluorescence lifetime imaging from multiple sensor data fusion. COSI (2020). https://doi.org/10.1364/COSI.2020.CW1B.3 Garutti, E., Musienko, Y.: Radiation damage of SiPMs. Nucl. Instrum. 926, 69–84 (2019). https://doi.org/10.1016/j.nima.2018.10.191 Hsieh, C.-A., Tsai, C.-M., Tsui, B.-Y., Hsiao, B.-J., Lin, S.-D.: Photon-detection-probability simulation method for CMOS single-photon avalanche diodes. Sensors 20(2), 436 (2020). https://doi.org/10.3390/s20020436 Hurkx, G.A.: On the modelling of tunnelling currents in reverse-biased p–n junctions. Solid State Electron. 32(8), 665–668 (1989). https://doi.org/10.1016/0038-1101(89)90146-9 Hurkx, G.A., Klaassen, D.B., Knuvers, M.P.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron. Dev. 39(2), 331–338 (1992). https://doi.org/10.1109/16.121690 Jouni, A., Malherbe, V., Mamdy, B., Thery, T., Sicre, M., Soussan, D., Goiffon, V.: Study of proton-induced defects in 40-nm CMOS SPADs. IEEE Trans. Nucl. Sci. (2023). https://doi.org/10.1109/TNS.2023.3257740 Kekkonen, J., Talala, T., Nissinen, J., Nissinen, I.: On the spectral quality of time-resolved CMOS SPAD-based Raman spectroscopy with high fluorescence backgrounds. IEEE Sens. J. 20(9), 4635–4645 (2020). https://doi.org/10.1109/JSEN.2020.2966119 Kimpton, D., Kerr, J.: A simple trap-detrap model for accurate prediction of radiation induced threshold voltage shifts in radiation tolerant oxides for all static or time variant oxide fields. Solid State Electron. 37(1), 153–158 (1994). https://doi.org/10.1016/0038-1101(94)90120-1 Liu, Q., Zhang, H., Hao, L., Hu, A., Wu, G., Guo, X.: Total dose test with γ-ray for silicon single photon avalanche diodes. Chin. Phys. B 29(8), 088501 (2020). https://doi.org/10.1088/1674-1056/ab9286 Madonini, F., Severini, F., Zappa, F., Villa, F.: Single photon avalanche diode arrays for quantum imaging and microscopy. Adv. Quantum Technol. 4(7), 2100005 (2021). https://doi.org/10.1002/qute.202100005 Morozzi, A., Moscatelli, F., Lombardi, G., Bilei, G.M., Hinger, V., Bergauer, T., Passeri, D.: Characterization of irradiated p-type silicon detectors for TCAD surface radiation damage model validation. JINST 15(1), C01029 (2020). https://doi.org/10.1088/1748-0221/15/01/C01029 Morrison, D., Kennedy, S., Delic, D., Yuce, M.R., Redouté, J.-M.: A 64 × 64 SPAD Flash LIDAR Sensor using a triple integration timing technique with 1.95 mm depth resolution. IEEE Sens. J. 21(10), 11361–11373 (2021). https://doi.org/10.1109/JSEN.2020.3030788 Najam, F., Yu, Y.S.: Compact trap-assisted-tunneling model for line tunneling field-effect-transistor Devices. Appl. Sci. 10(13), 4475 (2020). https://doi.org/10.3390/app10134475 Nolet F, Lemaire W, Dubois F, Roy N, Carrier S, Samson A, Pratte J-F (2020) A 256 pixelated SPAD readout ASIC with in-pixel TDC and embedded digital signal processing for uniformity and skew correction. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 949, 162891. Doi: 10.1016/j.nima.2019.162891 Ratti, L., Brogi, P., Collazuol, G., Dalla Betta, G.F., Ficorella, A., Marrocchesi, P.S., Vacchi, C.: Dark count rate distribution in neutron-irradiated CMOS SPADs. IEEE Trans. Electron. Dev. 66(12), 5230–5237 (2019). https://doi.org/10.1109/TED.2019.2944482 Ratti, L., Brogi, P., Collazuol, G., Dalla Betta, G.-F., Ficorella, A., Marrocchesi, P.S., Vacchi, C.: DCR performance in neutron-irradiated CMOS SPADs from 150- to 180-nm technologies. IEEE Trans. Nucl. Sci. 67(7), 1293–1301 (2020). https://doi.org/10.1109/TNS.2020.2978198 Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952). https://doi.org/10.1103/PhysRev.87.835 Shojaee, F., Haddadifam, T., Karami, M.A.: Jitter modulation by photon wavelength variation in single-photon avalanche diodes (SPADs). Opt. Quantum Electron. 53, 1–10 (2021). https://doi.org/10.1007/s11082-021-02991-z Shojaee, F., Zarei, M., Ratti, L., Karami, M.A.: A new guard ring for ionizing radiation tolerance enhancement in single-photon avalanche diodes. Microelectron. Reliab. 135, 114573 (2022). https://doi.org/10.1016/j.microrel.2022.114573 Smith, J., Dhulla, V., Mukherjee, S., Lauenstein, J.-M., Hare, R., Zorn, C., Hostetler, C.: Evaluation of an operational concept for improving radiation tolerance of single-photon avalanche diode (SPAD) arrays. IEEE Trans. Nucl. Sci. 67(5), 797–804 (2020). https://doi.org/10.1109/TNS.2020.2979808 Yue, X., Ping, X., Xiaopeng, X., Yang, H.: A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors. Semicond. Sci. Technol. 31(6), 065024 (2016). https://doi.org/10.1088/0268-1242/3 Zhang, L., Chan, M.: Tunneling Field Effect Transistor Technology. Springer International Publishing (2016)