Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của khoảng cách vòng bảo vệ đến phản ứng bức xạ của đi-ốt lao động đơn photon
Tóm tắt
Trong nghiên cứu này, hiệu ứng khoảng cách vòng bảo vệ đối với phản ứng liều tổng hợp ion hóa của đi-ốt lao động đơn photon (SPAD) được khảo sát. Tần suất phát hiện tối (DCR) dưới bức xạ tia X 1 Mrad (SiO2) giảm 12,9% bằng cách tạo khoảng cách giữa vòng bảo vệ và vùng hoạt động là 5 micromet trong một SPAD được sản xuất theo công nghệ CMOS (bipolar complementary metal-oxide semiconductor) điện áp cao 180 nm. Hơn nữa, xác suất phát hiện photon (PDP) của cấu trúc đề xuất và SPAD DPD thông thường được tính toán, cho thấy rằng sự biến đổi PDP của cấu trúc đề xuất là không đáng kể.
Từ khóa
#đi-ốt lao động đơn photon #SPAD #vòng bảo vệ #phản ứng bức xạ #tần suất phát hiện tối #xác suất phát hiện photonTài liệu tham khảo
Buchner, A., Hadrath, S., Burkard, R., Kolb, F., Ruskowski, J., Ligges, M., Grabmaier, A.: Analytical evaluation of signal-to-noise ratios for avalanche- and single-photon avalanche diodes. J. Sens. 21(8), 2887 (2021). https://doi.org/10.3390/s21082887
Campajola, M., Di Capua, F., Fiore, D., Sarnelli, E., Aloisio, A.: Proton induced dark count rate degradation in 150-nm CMOS single-photon avalanche diodes. Nucl. Instrum. 947, 162722 (2019). https://doi.org/10.1016/j.nima.2019.162722
Ceccarelli, F., Acconcia, G., Gulinatti, A., Ghioni, M., Rech, I., Osellame, R.: Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4(2), 2000102 (2021). https://doi.org/10.1002/qute.202000102
Dalal, R.: Simulation of irradiated detectors. In: The 23rd International Workshop on Vertex Detectors, p. 030. Sissa Medialab (2015)
Fatima, A., Whitelaw, J., Zickus, V., McGhee, E., Insall, R., Machesky, L., Faccio, D.: Enhanced-resolution fluorescence lifetime imaging from multiple sensor data fusion. COSI (2020). https://doi.org/10.1364/COSI.2020.CW1B.3
Garutti, E., Musienko, Y.: Radiation damage of SiPMs. Nucl. Instrum. 926, 69–84 (2019). https://doi.org/10.1016/j.nima.2018.10.191
Hsieh, C.-A., Tsai, C.-M., Tsui, B.-Y., Hsiao, B.-J., Lin, S.-D.: Photon-detection-probability simulation method for CMOS single-photon avalanche diodes. Sensors 20(2), 436 (2020). https://doi.org/10.3390/s20020436
Hurkx, G.A.: On the modelling of tunnelling currents in reverse-biased p–n junctions. Solid State Electron. 32(8), 665–668 (1989). https://doi.org/10.1016/0038-1101(89)90146-9
Hurkx, G.A., Klaassen, D.B., Knuvers, M.P.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron. Dev. 39(2), 331–338 (1992). https://doi.org/10.1109/16.121690
Jouni, A., Malherbe, V., Mamdy, B., Thery, T., Sicre, M., Soussan, D., Goiffon, V.: Study of proton-induced defects in 40-nm CMOS SPADs. IEEE Trans. Nucl. Sci. (2023). https://doi.org/10.1109/TNS.2023.3257740
Kekkonen, J., Talala, T., Nissinen, J., Nissinen, I.: On the spectral quality of time-resolved CMOS SPAD-based Raman spectroscopy with high fluorescence backgrounds. IEEE Sens. J. 20(9), 4635–4645 (2020). https://doi.org/10.1109/JSEN.2020.2966119
Kimpton, D., Kerr, J.: A simple trap-detrap model for accurate prediction of radiation induced threshold voltage shifts in radiation tolerant oxides for all static or time variant oxide fields. Solid State Electron. 37(1), 153–158 (1994). https://doi.org/10.1016/0038-1101(94)90120-1
Liu, Q., Zhang, H., Hao, L., Hu, A., Wu, G., Guo, X.: Total dose test with γ-ray for silicon single photon avalanche diodes. Chin. Phys. B 29(8), 088501 (2020). https://doi.org/10.1088/1674-1056/ab9286
Madonini, F., Severini, F., Zappa, F., Villa, F.: Single photon avalanche diode arrays for quantum imaging and microscopy. Adv. Quantum Technol. 4(7), 2100005 (2021). https://doi.org/10.1002/qute.202100005
Morozzi, A., Moscatelli, F., Lombardi, G., Bilei, G.M., Hinger, V., Bergauer, T., Passeri, D.: Characterization of irradiated p-type silicon detectors for TCAD surface radiation damage model validation. JINST 15(1), C01029 (2020). https://doi.org/10.1088/1748-0221/15/01/C01029
Morrison, D., Kennedy, S., Delic, D., Yuce, M.R., Redouté, J.-M.: A 64 × 64 SPAD Flash LIDAR Sensor using a triple integration timing technique with 1.95 mm depth resolution. IEEE Sens. J. 21(10), 11361–11373 (2021). https://doi.org/10.1109/JSEN.2020.3030788
Najam, F., Yu, Y.S.: Compact trap-assisted-tunneling model for line tunneling field-effect-transistor Devices. Appl. Sci. 10(13), 4475 (2020). https://doi.org/10.3390/app10134475
Nolet F, Lemaire W, Dubois F, Roy N, Carrier S, Samson A, Pratte J-F (2020) A 256 pixelated SPAD readout ASIC with in-pixel TDC and embedded digital signal processing for uniformity and skew correction. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 949, 162891. Doi: 10.1016/j.nima.2019.162891
Ratti, L., Brogi, P., Collazuol, G., Dalla Betta, G.F., Ficorella, A., Marrocchesi, P.S., Vacchi, C.: Dark count rate distribution in neutron-irradiated CMOS SPADs. IEEE Trans. Electron. Dev. 66(12), 5230–5237 (2019). https://doi.org/10.1109/TED.2019.2944482
Ratti, L., Brogi, P., Collazuol, G., Dalla Betta, G.-F., Ficorella, A., Marrocchesi, P.S., Vacchi, C.: DCR performance in neutron-irradiated CMOS SPADs from 150- to 180-nm technologies. IEEE Trans. Nucl. Sci. 67(7), 1293–1301 (2020). https://doi.org/10.1109/TNS.2020.2978198
Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952). https://doi.org/10.1103/PhysRev.87.835
Shojaee, F., Haddadifam, T., Karami, M.A.: Jitter modulation by photon wavelength variation in single-photon avalanche diodes (SPADs). Opt. Quantum Electron. 53, 1–10 (2021). https://doi.org/10.1007/s11082-021-02991-z
Shojaee, F., Zarei, M., Ratti, L., Karami, M.A.: A new guard ring for ionizing radiation tolerance enhancement in single-photon avalanche diodes. Microelectron. Reliab. 135, 114573 (2022). https://doi.org/10.1016/j.microrel.2022.114573
Smith, J., Dhulla, V., Mukherjee, S., Lauenstein, J.-M., Hare, R., Zorn, C., Hostetler, C.: Evaluation of an operational concept for improving radiation tolerance of single-photon avalanche diode (SPAD) arrays. IEEE Trans. Nucl. Sci. 67(5), 797–804 (2020). https://doi.org/10.1109/TNS.2020.2979808
Yue, X., Ping, X., Xiaopeng, X., Yang, H.: A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors. Semicond. Sci. Technol. 31(6), 065024 (2016). https://doi.org/10.1088/0268-1242/3
Zhang, L., Chan, M.: Tunneling Field Effect Transistor Technology. Springer International Publishing (2016)