Guaranteed Deterministic Approach to Superhedging: Sensitivity of Solutions of the Bellman-Isaacs Equations and Numerical Methods

Computational Mathematics and Modeling - Tập 31 Số 3 - Trang 384-401 - 2020
Smirnov, S. N.1
1Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia

Tóm tắt

We consider a guaranteed deterministic formulation for the super-replication problem in discrete time: find a guaranteed coverage of a contingent claim on an option under all possible scenarios. These scenarios are specified by a priori compacta that depend on historical prices: the price increments at each instant should be in the corresponding compacta. We assume the presence of trading constraints and the absence of transaction costs. The problem is posed in a game-theoretical setting and leads to Bellman–Isaacs equations in both pure and mixed “market” strategies. In the present article, we investigate the sensitivity of the solutions to small perturbations of the compacta that describe price uncertainties over time. Numerical methods are proposed allowing for the problem’s specific features.

Tài liệu tham khảo

citation_journal_title=Matem. Teoriya Igr i Ee Prilozheniya; citation_title=Guaranteed deterministic approach to superhedging: market model, trading constraints, no-arbitrage, and the Bellman–Isaacs equations; citation_author=SN Smirnov; citation_volume=10; citation_issue=4; citation_publication_date=2018; citation_pages=59-99; citation_id=CR1 citation_journal_title=Matem. Teoriya Igr i Ee Prilozheniya; citation_title=Guaranteed deterministic approach to superhedging: “no arbitrage” market properties; citation_author=SN Smirnov; citation_volume=11; citation_issue=2; citation_publication_date=2019; citation_pages=68-95; citation_id=CR2 citation_journal_title=Matem. Teoriya Igr i Ee Prilozheniya; citation_title=Guaranteed deterministic approach to superhedging: semi-continuity and continuity properties of the solutions of the Bellman–Isaacs equations; citation_author=SN Smirnov; citation_volume=11; citation_issue=4; citation_publication_date=2019; citation_pages=87-115; citation_id=CR3 S. N. Smirnov, “Guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman–Isaacs equations,” in: Frontiers of Dynamic Games. Game Theory and Management, St. Petersburg, Cham, Birkhauser (2019), pp. 267–288. citation_journal_title=Matem. Teoriya Igr i Ee Prilozheniya; citation_title=Guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium; citation_author=SN Smirnov; citation_volume=12; citation_issue=1; citation_publication_date=2020; citation_pages=60-90; citation_id=CR5 S. N. Smirnov, “Guaranteed deterministic approach to superhedging: the best market behavior scenarios and the moment problem,” Matem. Teoriya Igr i Ee Prilozheniya, 12 (2020), in print. citation_journal_title=Mathematics; citation_title=A guaranteed deterministic approach to superheding: case of the convex payoff functions on options; citation_author=SN Smirnov; citation_volume=7; citation_issue=1246; citation_publication_date=2019; citation_pages=1-19; citation_id=CR7 S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis: Theory, Vol. I, Mathematics and Its Applications, Vol. 419, Springer, Berlin (1997). L. N. Polyakov, Development of MathematicalTheory and Numerical Methods for the Solution of Some Classes of Nonsmooth Optimization Problems [in Russian], Doctoral Thesis, Sankt-Peterburg (1998). E. S. Polovinkin, Multivalued Analysis and Differential Inclusions [in Russian], Nauka, Moscow (2015). R. T. Rockafellar, Convex Analysis, Princeton Univ. Press (1970). K. Leichtweiss, Convex Sets [Russian translation from the German], Nauka, Moscow (1985). A. G. Sukharev, Minimax Algorithms in Numerical Analysis [in Russian], Nauka, Moscow (1989). V. M. Tikhomirov, Some Topics in Approximation Theory [in Russian], Izd. MGU, Moscow(1976). V. N. Ushakov and P. D. Lebedev, “Optimal covering algorithms for sets on ℝ2,” Vestnik Udmurt. Univ., Mat. Mechan., Comput. Sci., 26, No. 2, 258–270 2016. T. Hales et al., “A formal proof of the Kepler conjecture,” Forum of Mathematics, Pi, Vol. 5, Cambridge Univ. Press (2017). citation_title= ; citation_publication_date=1993; citation_id=CR17; citation_author=JH Conway; citation_author=NJA Sloane; citation_publisher=Springer citation_title=J. O’Rourke, and C. D. Toth, ; citation_publication_date=2017; citation_id=CR18; citation_author=J Goodman; citation_publisher=CRC Press