Grundy dominating sequences and zero forcing sets
Tài liệu tham khảo
Brešar, 2014, Dominating sequences in graphs, Discrete Math., 336, 22, 10.1016/j.disc.2014.07.016
Brešar, 2016, Dominating sequences under atomic changes with applications in Sierpiński and interval graphs, Appl. Anal. Discrete Math., 10, 518, 10.2298/AADM161005024B
Brešar, 2016, Dominating sequences in grid-like and toroidal graphs, Electron. J. Combin., 23, 19, 10.37236/6269
Brešar, 2016, Total dominating sequences in graphs, Discrete Math., 339, 1665, 10.1016/j.disc.2016.01.017
2008, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl., 428, 1628, 10.1016/j.laa.2007.10.009
K.F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevskak, B. Wissman, Power domination and zero forcing, arXiv:1510.02421 [math.CO].
Haynes, 2002, Domination in graphs applied to electric power networks, SIAM J. Discrete Math., 15, 519, 10.1137/S0895480100375831
Aazami, 2008
Barioli, 2010, Zero forcing parameters and minimum rank problems, Linear Algebra Appl., 433, 401, 10.1016/j.laa.2010.03.008
Huang, 2010, On minimum rank and zero forcing sets of a graph, Linear Algebra Appl., 432, 2961, 10.1016/j.laa.2010.01.001
Taklimi, 2014, On the relationships between zero forcing numbers and certain graph coverings, Spec. Matrices, 2, 30
Hammack, 2011
Klavžar, 1997, Graphs S(n,k) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J., 47, 95, 10.1023/A:1022444205860
Hinz, 2017, A survey and classification of Sierpiński-type graphs, Discrete Appl. Math., 217, 565, 10.1016/j.dam.2016.09.024
B. Brešar, T. Kos, G. Nasini, P. Torres, Total dominating sequences in trees, split graphs, and under modular decomposition, arXiv:1608.06804 [math.CO].
Chang, 2012, Generalized power domination of graphs, Discrete Appl. Math., 160, 1691, 10.1016/j.dam.2012.03.007
Amos, 2015, Upper bounds on the k-forcing number of a graph, Discrete Appl. Math., 181, 1, 10.1016/j.dam.2014.08.029
D. Ferrero, L. Hogben, F.H.J. Kenter, M. Young, The relationship between k-forcing and k-power domination, arXiv:1701.08386 [math.CO].
Fink, 1985, On n-domination, n-dependence and forbidden subgraphs, 301
Argiroffo, 2015, On the complexity of {k}-domination and k-tuple domination in graphs, Inform. Process. Lett., 115, 556, 10.1016/j.ipl.2015.01.007
Hansberg, 2009, Upper bounds on the k-domination number and the k-Roman domination number, Discrete Appl. Math., 157, 1634, 10.1016/j.dam.2008.10.011
Chellali, 2012, k-domination and k-independence in graphs: a survey, Graphs Combin., 28, 1, 10.1007/s00373-011-1040-3
Hogben, 2012, Propagation time for zero forcing on a graph, Discrete Appl. Math., 160, 1994, 10.1016/j.dam.2012.04.003
Aazami, 2010, Domination in graphs with bounded propagation: algorithms, formulations and hardness results, J. Comb. Optim., 19, 429, 10.1007/s10878-008-9176-7
Dorbec, 2014, Generalized power domination: propagation radius and Sierpiński graphs, Acta Appl. Math., 134, 75, 10.1007/s10440-014-9870-7
Liao, 2016, Power domination with bounded time constraints, J. Comb. Optim., 31, 725, 10.1007/s10878-014-9785-2