Growth ring response in Paratecoma peroba (Record) Kuhlm. of seasonal semideciduous forest in Southeast Brazil

Dendrochronologia - Tập 72 - Trang 125924 - 2022
Glaziele Campbell1, Cátia Henriques Callado2, Warlen Silva da Costa2, Jonas de Brito Campolina Marques1, Saulo Pireda1, Maura Da Cunha1
1Centro de Biociências e Biotecnologia, Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego 2000, Parque Califórnia, sala 25, Campos dos Goytacazes, RJ 28013-602, Brazil
2Instituto de Biologia Roberto Alcantara Gomes, Laboratório de Anatomia Vegetal, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524-PHLC, sala 224. Maracanã, Rio de Janeiro, RJ 20550-900, Brazil

Tài liệu tham khảo

Alvares, 2013, Köppen’s climate classification map for Brazil, Meteor. Z., 22, 711, 10.1127/0941-2948/2013/0507 Angyalossy, 2006, Câmbio, 205 Ballesteros, 2010, Changes in wood anatomy in tree rings of Pinus pinaster Ait. following wounding by flash floods, Tree Ring Res., 66, 93, 10.3959/2009-4.1 Brandes, 2015, Seasonal cambial activity and wood formation in trees and lianas of Leguminosae growing in the Atlantic forest: a comparative study, Botany, 93, 211, 10.1139/cjb-2014-0198 Brienen, 2005, Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees, PROMAB Sci. Ser., 10 Brienen, 2006, The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species, . Ecol. Manag., 226, 256, 10.1016/j.foreco.2006.01.038 Büntgen, 2020, Return of the moth: rethinking the effect of climate on insect outbreaks, Oecologia, 192, 543, 10.1007/s00442-019-04585-9 Burger, L.M., Richter, H.G., 1991. Anatomia da madeira. Nobel, São Paulo. 160 pp. Callado, 2013, Cambial growth periodicity studies of south american woody species-a review, IAWA J., 34, 213, 10.1163/22941932-00000019 Callado, 2014, Studies on cambial activity: advances and challenges in the knowledge of growth dynamics of Brazilian woody species, An. cad. Bras. Ciên., 86, 277, 10.1590/0001-3765201320130033 Carvalho, P.E.R., 2006. Espécies arbóreas brasileiras. EMBRAPA Informação Tecnológica, Embrapa Florestas, Brasília. 627 pp. Coimbra Filho, 1951, Contribuição para o estudo do desenvolvimento inicial da Peroba-de-campos, Rev. De. Agron., 10, 187 Cook, 1981, The smoothing spline: a new approach to standartization forest interior tree-ring width series for dendroclimatic studies, Tree Ring Bull., 41, 45 Coradin, V.T.R., Camargos, J.A.A., Pastore, T.C.M., Christo, A.G., 2010. Madeiras Comerciais do Brasil: chave interativa de identificação baseada em caracteres gerais e macroscópicos. Serviço Florestal Brasileiro, Laboratório de Produtos Florestais: Brasília, CD-ROM. Corlett, 1995, Tropical secondary forests, Prog. Phys. Geogr., 19, 159, 10.1177/030913339501900201 Corrêa, F. 2000. A reserva da biosfera da mata atlântica: roteiro para o entendimento de seus objetivos e seu sistema de gestão. Série Cadernos da Reserva da Biosfera da Mata Atlântica. Caderno Nº 2. São Paulo. 26 pp. Costa, 2015, Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil, Dendrochronologia, 36, 23, 10.1016/j.dendro.2015.08.004 Deshpande, 2020, Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Ʌ13C values, Biogeosciences, 17, 5639, 10.5194/bg-17-5639-2020 Dickison, 2000, 560 Douglas, 1941, Crossdating in dendrochronology, J. For., 39, 825 Eisenlohr, 2015, The Brazilian Atlantic Forest: new findings, challenges and prospects in a shrinking hotspot, Biodivers. Conserv., 24, 2129, 10.1007/s10531-015-0995-4 Fritts, 1966, Growth-rings of trees: their correlation with climate, Science, 154, 973, 10.1126/science.154.3752.973 Gholami, 2015, Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers, J. Hydrol., 529, 1060, 10.1016/j.jhydrol.2015.09.028 Godoy-Veiga, 2018, Shadows of the edge effects for tropical emergent trees: the impact of lianas on the growth of Aspidosperma polyneuron, Trees, 32, 1073, 10.1007/s00468-018-1696-x Holmes, 1983, Computer-assisted quality control in tree-ring dating and measurement, Tree Ring Bull., 43, 69 1989, IAWA list of microscopic features for hardwood identification, IAWA J., 10, 219 INEA. Instituto Estadual do Ambiente. Estação Ecológica Estadual de Guaxindiba – EEEG: Plano de Manejo. Instituto Estadual do Ambiente. Rio de Janeiro: INEA, 2010. Publ. Internet. URL: 〈http://www.inea.rj.gov.br/cs/groups/public/documents/document/zwew/mde3/~edisp/inea0017335.pdf〉. (accessed 02.10.2018). InsideWood, data base, 2018. InsideWood. 2004-onwards [WWW Document]. Publ. Internet. URL: 〈http://insidewood.lib.ncsu.edu/search〉 (Accessed 16 January 2018). IPCC - Intergovernmental Panel on Climate Change, 2014. Climate Change 2014. Clim. Chang. 2014 Impacts, Adapt. Vulnerability - Contrib. Work. Gr. II to Fifth Assess. Rep., 35 1–32. doi:10.1016/j.renene.2009.11.012. Jacoby, 1997, Tree rings, carbon dioxide, and climatic change, Proc. Natl. Acad. Sci. U.S.A., 94, 8350, 10.1073/pnas.94.16.8350 Kalnay, 1996, NCAR 40-year reanalysis project, Bull. Am. Meteor Soc., 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 Leoni, 2011, Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management, . Ecol. Manag., 261, 62, 10.1016/j.foreco.2010.09.025 Lins B. , Nascimento M. , Fenologia de Paratecoma peroba (Bignoniaceae) em uma floresta estacional semidecidual do norte fluminense, Brasil Rodriguésia - Inst. Pesqui. Jard. Botânico Rio Jan. 61 2010 559 568 doi: 10.1590/2175-7860201061315. Lisi, 2008, Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil, IAWA J., 29, 189, 10.1163/22941932-90000179 Locosselli, 2017, The cambium activity in a changing world, Trees Struct. Funct., 32, 0 Locosselli, 2017, Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees, Trees Struct. Funct., 31, 1745, 10.1007/s00468-017-1599-2 Locosselli, 2016, Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst, Trees Struct. Funct., 30, 1127, 10.1007/s00468-015-1351-8 Lohmann, L.G., 2014. Bignoniaceae [WWW Document]. List. Espécies da Flora do Bras. Jard. Botânico do Rio Janeiro. Publ. Internet. URL: 〈http://reflora.jbrj.gov.br/jabot/floradobrasil/FB112305〉 (accessed 9.6.14). Lorenzi, H. 2009. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum, 42 pp. Macedo, 2021, Diversity of growth responses to recent droughts reveals the capacity of Atlantic Forest trees to cope well with current climatic variability, For. Ecol. Manag., 480, 1, 10.1016/j.foreco.2020.118656 Martín-Benito, 2008, Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes, Trees Struct. Funct., 22, 363, 10.1007/s00468-007-0191-6 2013, 457 Martinelli, 2004, Climate from dendrochronology: Latest developments and results, Glob. Planet. Change, 40, 129, 10.1016/S0921-8181(03)00103-6 Matezáns, 2014, 1 Mattos, 2015, Climate-tree growth relationships of Mimosa tenuiflora in seasonally dry tropical forest, Brazil, Cerne, 21, 141, 10.1590/01047760201521011460 Mittermeier, 2005 Murray-Smith, 2009, Plant diversity hotspots in the Atlantic coastal forests of Brazil, Conserv. Biol., 23, 151, 10.1111/j.1523-1739.2008.01075.x Myers, 2000, Biodiversity hotspots for conservation priorities, Nature, 403, 853, 10.1038/35002501 Ogden, 1981, Dendrochronological studies and the determination of tree ages in the Australian tropics, J. Biogeogr., 8, 405, 10.2307/2844759 Pace, 2015, Wood anatomy of major Bignoniaceae clades, Plant Syst. Evol., 301, 967, 10.1007/s00606-014-1129-2 Pau, 2018, Tropical forest temperature thresholds for gross primary productivity, Ecosphere, 9, 1, 10.1002/ecs2.2311 Pereira, 2011, Growth and ion accumulation in seedlings of Handroanthus serratifolius (VAHL.) cultivated in saline solution, Sci. For., 39, 441 Poljanšek, 2015, Tree growth and needle dynamics of P. nigra and P. sylvestris and their response to climate and fire disturbances, Trees Struct. Funct., 29, 683, 10.1007/s00468-014-1146-3 Rambaldi, D.M. 2003. A Reserva da Biosfera da Mata Atlântica no Estado do Rio de Janeiro. Série Estados e Regiões da Reserva da Biosfera da Mata Atlântica. Conselho Nacional da Reserva da Biosfera da Mata Atlântica: Rio de Janeiro. 26 pp. Rezende, 2018, From hotspot to hopespot: an opportunity for the Brazilian Atlantic, Perspect. Ecol. Conserv, 16, 208 Rizzini, C.T. Tratado de fitogeografia do Brasil. EDUSP, São Paulo, 1997. 747 pp. Rodrigo, 1999, A 500-year precipitation record in Southern Spain, Int. J. Climatol., 19, 1233, 10.1002/(SICI)1097-0088(199909)19:11<1233::AID-JOC413>3.0.CO;2-L Roig, F.A., 2000. Dendrocronología en América Latina. EDIUNC: Editorial de la Universidad Nacional de Cuyo, Mendoza. 434 pp. Rolim, 2018, Modelos de crescimento em diâmetro para 35 espécies da Mata Atlântica em plantios experimentais no norte do Espirito Santo, 31 Rolland, 2001, The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys, Trees, 15, 414, 10.1007/s004680100116 Rother, 2014, Climatic influences on fire regimes in ponderosa pine forests of the Zuni Mountains, NM, USA, . Ecol. Manag., 322, 69, 10.1016/j.foreco.2014.02.034 Santos, 2011, An analysis of species distribution patterns in the atlantic forests of Southeastern Brazil, Edinb. J. Bot., 68, 373, 10.1017/S0960428611000254 Scarano, 2015, Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change, Biodivers. Conserv., 24, 2319, 10.1007/s10531-015-0972-y Schöngart, 2008, Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains, . Ecol. Manag., 256, 46, 10.1016/j.foreco.2008.03.037 Schöngart, 2007, Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis, Ann. . Sci., 64, 657, 10.1051/forest:2007044 Schöngart, 2011, Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil, Biogeosciences, 8, 3407, 10.5194/bg-8-3407-2011 Schulman, 1956, 142 Shi, 2010, An unstable tree-growth response to climate in two 500 year chronologies, North Eastern Qinghai-Tibetan Plateau, Dendrochronologia, 28, 225, 10.1016/j.dendro.2009.12.002 Silva, 2001, Fitossociologia de um remanescente de mata sobre tabuleiros no norte do estado do Rio de Janeiro (Mata do Carvão), Rev. Bras. Bot., 24, 51, 10.1590/S0100-84042001000100006 Silva, 2019, The growth ring concept: seeking a broader and unambiguous approach covering tropical species, Biol. Rev., 94 Soliz-Gamboa, 2011, Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees, Trees Struct. Funct., 25, 17, 10.1007/s00468-010-0468-z Speer, 2010, 521 Statsoft, 1993. Statistica: Statsoft for windows: General conventions and statistics I. User’s Handbook. Microsoft Corporation, Tulsa. Swaine, 1988, On the definition of ecological species groups in tropical rain forests, Vegetatio, 75, 81, 10.1007/BF00044629 Tardif, 2006, Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada, Can. J. . Res., 36, 2317, 10.1139/x06-133 Veblen, 2007, Fire history in northern patagonia: the roles of humans and climatic variation, Ecol. Monogr., 69, 47, 10.1890/0012-9615(1999)069[0047:FHINPT]2.0.CO;2 Villela, 2006, Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest, J. Biogeogr., 33, 506, 10.1111/j.1365-2699.2005.01453.x Wigley, 1984, On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Appl. Meteorol. Climatol., 23, 201, 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 Williams, 2011, Forests of East Australia: the 35th biodiversity hotspot, 295 Wimmer, 2002, Wood anatomical features in tree-rings as indicators of environmental change, Dendrochronologia, 20, 21, 10.1078/1125-7865-00005 Witovisk, 2017, The dead forest on Trindade Island was not monospecific, says the wood, IAWA J., 0, 1 Worbes, 1995, How to measure growth dynamics in Tropical Trees, IAWA J., 16, 337, 10.1163/22941932-90001424 Worbes, 2003, Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon, . Ecol. Manag., 173, 105, 10.1016/S0378-1127(01)00814-3 Zhang, 2015, Tree-rings, a key ecological indicator of environment and climate change, Ecol. Indic., 51, 107, 10.1016/j.ecolind.2014.07.042 Zhu, 2016, A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China, Clim, 12, 1485