Khuyến khích tăng trưởng và giảm thiểu bệnh tật cho bốn loại rau quả bằng cách sử dụng chủng vi khuẩn thúc đẩy tăng trưởng thực vật (PGPR) Bacillus subtilis 21-1 dưới hai điều kiện đất khác nhau

Springer Science and Business Media LLC - Tập 36 - Trang 1353-1362 - 2014
Se-Weon Lee1, Seo-Hyun Lee1, K. Balaraju1, Kyung-Soo Park1, Ki-Woong Nam2, Jin-Woo Park1, Kyungseok Park1
1Microbial Plant Activation Laboratory, Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), RDA, Suwon, South Korea
2Department of Horticulture, Hankyung National University, Ansung, South Korea

Tóm tắt

Nghiên cứu này nhằm điều tra hiệu quả của một chủng PGPR, Bacillus subtilis 21-1 (BS21-1), dưới hai điều kiện đất khác nhau nhằm thúc đẩy sự phát triển cây trồng và giảm thiểu bệnh tật. Việc xử lý bằng BS21-1 đã thúc đẩy sự phát triển của cây trồng một cách đáng kể (P < 0,05) như được đo bằng chiều cao cây và chiều rộng lá, đồng thời tăng tỷ lệ nảy mầm hạt giống trong đất hữu cơ (OS) so với đất gieo (SBS). Đối với cải thảo và xà lách, bệnh thối mềm đã giảm xuống còn 45 và 23,5% tương ứng nhờ vào BS21-1, còn với các phương pháp xử lý bằng benzo-(1,2,3)-thidiazole-7-carbothioic acid S-methyl ester (BTH) thì tỷ lệ này giảm xuống còn 33 và 52,5% trong OS so với SBS. Mức độ giảm bệnh này cao hơn so với nhóm kiểm soát được xử lý bằng nước khi bị tấn công bởi các tác nhân gây bệnh. Có sự giảm đáng kể các tổn thương do bệnh héo đen trên lá cây dưa chuột được xử lý bằng BS21-1 và BTH trong OS so với SBS. Bệnh thối Botrytis ở cà chua do Botrytis cinerea gây ra đã được giảm đáng kể xuống còn 2% trong OS và 4% trong SBS nhờ vào việc xử lý bằng BS21-1. Trong bốn cây trồng được nghiên cứu, có sự gia tăng khả năng giảm bệnh trong OS so với SBS. Sau khi điều trị bằng BS21-1, sự biểu hiện của gen PR-1a đã tăng lên thông qua hoạt động β-gulcuronidase (GUS) trong cây thuốc lá (Nicotiana tabacum L. cv. Xanthi-nc) trong OS so với SBS, cho thấy một vai trò tiềm năng của con đường SA trong việc bảo vệ thực vật do BS21-1 điều chỉnh. Do đó, chủng cách ly BS21-1 có thể được sử dụng hiệu quả như một trong những tác nhân sinh học để giảm thiểu bệnh tật cho bốn loại rau quả thông qua khả năng miễn dịch hệ thống và thúc đẩy sự phát triển cây trồng.

Từ khóa

#PGPR #Bacillus subtilis #cây trồng #giảm thiểu bệnh #thúc đẩy tăng trưởng

Tài liệu tham khảo

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266 Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Austr J Crop Sci 4:378–383 Bashan Y, Holguin G (1997) Azospirillum-plant relationship: environmental and physiological advances. Can J Microbiol 43:103–121 Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258 Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350 Catinot JA, Buchala AE, Mansour Metraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478 Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432 Chun J, Lee JH, Jung Y, Kim M, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int Syst Evol Microbiol 57:2259–2261 Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213 Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862 Heil M (1999) Systemic acquired resistance: available information and open ecological questions. J Ecol 87:341–346 Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defense: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654 Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405 Jeun YC, Lee YJ, Bae YS (2004) Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare. Plant Pathol J 20(3):172–176 Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45:71–77 Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishing, Dordrecht, pp 315–326 Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266 Landa BB, Navas-Cortés JA, Jiménez-Diaz RM (2004) Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol 53:341–352 Mendoza Garcia RA, Martijn ten Hoopen G, Kass DCJ, Sanchez Garita VA, Krauss U (2003) Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biol Control 27:210–227 Montealegre JR, Reyes Perez LM, Herrera R, Silva P, Besoain X (2003) Selection of bio-antagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron J Biotechnol 6:115–127 Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:114–125 Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9 Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801 Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologia 17:362–370 Raupach GS, Liu I, Murphy IF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth promoting rhizobacteria (PGPR). Plant Dis 80:891–894 Reitz M, Rudolph K, Schroder K, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518 Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339 Ryu CM, Mohamed AF, Chia-Hui H, Munagala SR, Joseph WK, Paul WP (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 Sang MK, Kim KD (2011) Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology 101:732–740 Sang MK, Kim JG, Kim KD (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capisci. Phytopathology 100:774–783 Sang MK, Kim JG, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666–678 SAS Institute (1995) JMP statistics and graphics guide, version 3. SAS Institute, Cary, pp 65–95 Schneider M, Schweizer P, Meuwly P, Metraux JP (1996) Systemic acquired resistance in plants. In: Jeon KW (ed) International review of cytology, vol 168. Academic Press, San Diego, pp 303–340 Tamura K, Dudley J, Nei M, Kumar S (2007) Molecular evolutionary genetics and analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599 Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 Van Loon LC, Glick GR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170. Springer, Berlin, pp 177–205 Venkatesan P (2008) Induced disease resistance elicited by acibenzolar-S-methyl and plant growth-promoting rhizobacteria in tobacco (Nicotiana tabacum L.). Ph.D thesis submitted to Faculty of the Virginia Polytechnic Institute and State University Blacksburg, Virginia pp 188 Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586 Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotriichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512 Zhang S, White TL, Martinez MC, McInroy JA, Kloepper JW, Klassen W (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol Control 53:129–135