Growth of voids in a hyperelastic rectangular plate

Cheng Chang-jun1, Jiusheng Ren2
1Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, P R China
2Department of Mechanics, College of Sciences, Shanghai University, Shanghai, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity[J]. Phil. Tran. Roy. Soc. London, 1982, A306: 557–611.

Horgan C O, Polignone D A. Cavitation in nonlinear elastic solids: A review[J]. Applied Mechanics Review, 1995, 48(8): 471–485.

Horgan C O, Abeyaratne R. A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void[J]. J. Elasticity, 1986, 16: 189–200.

Hao Tian-hu. A theory of the appearance and growth in a class of compressible solids [J]. Int. J. Fract., 1990, 43: R51-R55.

Horgan C O. Void nucleation and growth for compressible nonlinearly elastic materials: An example [J]. Int. J. Solids & Structure, 1992, 29: 279–291.

Lei H C, Chang H W. Void formation and growth in a class of compressible solids[J]. J. Eng. Math., 1996, 30: 693–702.

Shang Xin-chun, Cheng Chang-jun. The spherical cavitation bifurcation in hyperealstic mate-rials[J]. Acta Mech. Sinica, 1996, 28: 751–756.

Shang Xin-chun, Cheng Chang-jun. Exact solution for cavitated bifurcation for compressible hyperealstic materials[J]. Int. J. Engineering Science,2001, 39: 1101–1117.

Cheng Chang-jun, Shang Xin-chun. The growth of the void in a hyperelastic rectangular plate under a uniaxial extension[J]. Applied Mathematics & Mechanics, 1997, 18: 615–621.

Ren Jiu-sheng, Cheng Chang-jun, Shang Xin-chun. Growth of a void in a rubber rectangular plate under uniaxial extension[J]. Journal of Shanghai University (English Edition), 2001, 5:177–182.

Rivlin R S. Large elastic deformations of isotropic materials. IV. Some uniqueness theorems for pure homogeneous deformations [J]. Philosophical Trans. Roy. Soc. London, 1948, 240: 419–508.

Rivlin R S. Stability of pure homogeneous deformation of an elastic cube under dead loading [J]. Quart, of Applied Math., 1974, 32: 265–271.

Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle [J]. Advances in Applied Mechanics, 1983, 23: 179–296.